
DOCUMENT RESUME

ED 111 347 IR 002 374

AUTHOR Weyer, S. A.; Cannara, A. B.
TITLE Children Learning Computer Programming: Experiments

with Languages, Curricula and Programmable Devices.
Technical Report No. 250.

INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies
in Socikl Science.

SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO SU-IMSSS-TR-250
PUB DATE 27 Jan 75
NOTE 228p.

EDRS PRICE MF-$0.76 HC-$12.05 Plus Postage
DESCRIPTORS Children; *Computer Programs; Computers; Computer

Science; *Computer Science Education; *Curriculum
Design; Experimental Curriculum; Intermediate Grades;
Junior High Schools; Program Descriptions;
*Programing Languages

IDENTIFIERS LOGO; Machine Language; Simper

ABSTRACT
An experiment was conducted to study how children,

aged 10-15 years, learn concepts relevant to computer programing and
how they learn modern programing languages. The implicit educational
goal was to teach thinking strategies through the medium of
programing concepts and their applications. The computer languages
Simper and Logo were chosen because they are computationally general,
relatively easy to learn, interactive with powerful editing features,
and are highly dissimilar. The experiment included significant
tutoring, curriculum design, and various special output devices such
as graphic displays, robots, electric trains, and sound synthesizers.
The report is divided into six major sections: (1) introduction:
background and motivation; (2) programing facilities; (3) student
selection, grouping and tutoring; (4) curricula; (5) data acquisition
and analysis; and (6) results. Among the results were suggested
modifications to both the Simper and Logo languages and to the
curriculum designed to teach them. (KKC)

* Documents acquired by ERIC include many informal unpublished *
* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. nevertheless, items of marginal *
* reproducibility are often encountered and this affects the quality *
* of the microfiche and hardcopy reproductions ERIC makes available *
* via the ERIC Document Reproduction Service (EDRS). EDRS is not *
* responsible for the quality of the original document. Reproductions *
* supplied by EDRS are the best that can be made from the original. *

Ae
Ag

CHILDREN LEARN i NG COMPUTER PROGRAMMING: EXPERIMENTS WITH

LANGUAGES, CURRICULA AND PROGRAMMABLE DEVICES

BY

S. A. WEYER AND A. B. CANNARA

TECHNICAL REPORT NO. 250

JANUARY 27, 1975

PSYCHOLOGY AND EDUCATION SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UN IVERS ITY

STANFORD, CALIFORNIA

TECHN I CAL REPORTS

PSYCHDLUGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses If published title Is different from title of Technical Report,
this Is also shown In parentheses.)

125 W. K. Estes. Reinforcement in human learning. December 20, 1967. (In J. Tapp (Ed.), Reinfercemeht and aeh ivies. New York; Academy;

Press, 1969. Pp. 63-94.)
126 G. L. Wolford, D. L. Wessel, and W. K. Estes. Further evidence concerning scanning and sampling assumptions of visual detection models.

January 31, 1968. (Perception and Psychophysics, 1968, 3, 439-444.)
127 R. C. Atkinson and R. M. Shiffrin. Some speculations on storage and retrieval processes in long-term memory. February 2, 1968.

(Psychological Review, 1969, 76, 179-193.)
128 J. Holmgren. Visual detection with Imperfect recognition. March 29, 1968. (Perception and Psychophysics , 1968, 4(4), .)
129 L. 8. Mlodnosky. The Frostig and the Bender Gestalt as predictors of reading achievement. April 12, 1968.

130 P. Suppes. Some theoretical models for mathematics learning. April 15, 1968. (Journal of Research and Development in Education, 1967,
1, 5-22.)

131 G. M. Olson. Learning and retention in a continuous recognition task. May 15, 1968. Livornal of Experimental Psychology, 1969, 81, 3b1 -384.)
132 R. N. Hartley. An investigation of list types and cues to facilitate initial reading vocabulary aeguibition. May 29, 1968. (Psychonomic Science,

1968, 12(b), 251-252, Effects of list types and cues on the learning of word lists. Reading Research Quarterly, 1970, (1), 97-121.)
133 P. Suppes. Stimulus-response theory of finite automata. June 19, 1968. (Journal of Mathematical Psychology, 1969, 6, 327-355.)
134 N. Mole and P. Suppes. Quantifier-free axioms for constructive plane geometry. June. 20, 1968. (Composite; Mathematiea, 1968, 20 , 143-152.)
135 W. K. Estes and D. P. Horst. Latency as a function of number of response alternatives in pawed-associate learning. July 1, 1968.

136 M. Schlag-Rey and P. Suppes. High-order dimensions in concept identification. July 2, 1968. (Psychometric Science, 1968, 11 , 141-142.)
137 R. M. Shiffrin. Search and retrieval processes in long-tenn memory. August 15, 1968.
138 R. D. Freund, G. R. Loftus, and R. C. Atkinson. Applications of multiprocess models for memory to continuous recognition tasks. Deceriber 18,

1968. (Journal of Mathematical Psychology, 1969, 6, 576-594.)
139 R. C. Atkinson. Information delay in human learning. December 18, 1968. (Journal of Verbal Learning and Verbal Behavior, 1969, 8 , 507-511.)
140 R. C. Atkinson, J. E. Holmgren, and J. F. Juola. Processing time as influenced by ae number of elements in the visual display. March 14, 1969.

(Perception and Psychophysics, 1969, 6, 321-326.)
141 P. Suppes, E. F. Loftus, and M. Jerman. Problem-solving on a computer-based teletype. March 25, 19u9. (Educational Studies in Matlacrnatacs,

1969, 2, 1-15.)
142 P. Suppes and M. Morningstar. Evaluation of three computer-assisted instruction programs. May 2, 1965. tComputer-assiateu instruction. Science,

1969, 166, 343-350.)
143 P. Suppes. Dn the problems of using mathematics in the development of the social sciences. May 12, 1969. tin Mathematic. in the social sciences

In Australia. Canberra: Australian Government Publishing Service, 1972. Pp. 3-15.)
144 Z. Domotor. Probabilistic relational structures and their applications. May 14, 19u9.
145 R. C. Atkinson and T. D. Wickens. Human memory and the coacept of reinforcement. Mai 20, 1969. ,In R. Ciarer tEd.), The nature of reintorcement.

New York: Academic Press, 1971. Pp. 66-120.)

146 R. J. Titiev. Some model - theoretic results in measurement theory. May 22, 1969. (Measurement structures in classes that are not universally

axiomatizable. Journal of Mathematical Psychology, 1972, 9, 200-205.)

147 P. Suppes. Measurement. Problems of theory and application. June 12, 1969. an Mathematics in the social sciences in Australia. Canberra.

Australian Government Piklishing Service, 1972. Pp. 613-622.)
148 P. Suppes and C. Ihrke. Accelerated program in elementary-school mathematies--The fourth year. August 7, 19a.,9. (Psychology in the Schools,

1970, 7, 111-126.)
149 D. Rundus and R. C. Atkinson. Rehearsal processes in free recall. A procedure for direct observation. August 12, 1969. tJotIro,d of Verbal

Learning and Verbal Behavior, 1970, 9, 99-105.)

150 P. Suppes and S. Feldman. Young children's comprehension of logical connectives. October 15, 1969. Usawal of Experimental Child

Psychology, 1971, 12, 304-317.)
151 J. H. Laubsch. An adaptive teaching system for optimal item allocation. November 14, 1969.

152 R. L. Klatzky and R. C. Atkinson. Memory scans baseu on alterraale test stimulus representations. November 2S, 1969. (Perception atm

Psychophysics, 1970, 8, 113 -117.)
153 J. E. Holmgren. Response latency as an indicant of information processing in visual search tasks. March 16, 1970.

154 P. Suppes. Probabilistic grammars for natural languages. May 15, 1970. (Synthese, 1970, 11, 111-222.)
155 E. M. Gammon. A syntactical analysis of some first-grate readers. June 22, 1970.

156 K. N. Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.

157 R. C. Atkinson and J. A. Paulson. An approach to the psychology of instruction. August 14, 1970. tPsyetielerneal bolietai, 1972, 78, 49-61.)

158 R. C. Atkinson, J. D. Fletcher, H. C. Chetm, and C. LI. Stauffer. Instruction in initial reading under computer cuntrol. The Stanford poles t.

August 13, 1970. (In A. Romano and S. Rossi (Eds.), Computers in education . 8ari, Italy. Adriatica Editrice, 1971. Po. 69-99.
Republished: Educational Technology Publications, Number 20 in a series, Englewood Cliffs, N. J.)

159 D. J. Rundus. An analysis of rehearsal processes in free recall. August 21, 1970. (Analyses of rehearsal processes in rye recall. Journal

of Experimental Psychology, 1971, 89, 63-77.)
160 R. L. Klatzky, J. F. Juola, and R. C. Atkinson. Test stimulus representation and exevrianental context effects in inerary scannuid. 1J001.1)41

of Experimental Psychology, 1971, 87, 281-288.)

161 W. A. Rottmayer. A formal theory of perception. November 13, 1970.

162 E. J. F. Loftus. An analysis of the structural variables that determine problem-solving difficulty on a co,npat.n-ba:cu acietype. December 18,

1970.
163 J. A. Van Campen. Towards the automatic generation of progra med foreign-language instructivraal mateiial:,. January 11, 1971.

164 J. Friend and R. C. Atkinson. Computer-assisted instruction In programming: AID. January 25, 1971.

CHILDREN LEARNING COMPUTER PROGRAMMING: EXPERIMENTS WITH

LANGUAGES, CURRICULA AND PROGRAMMABLE DEVICES

by

S. A. Weyer and A. B. Cannara

TECHNICAL REPORT NO. 250

January 27, 1975

PSYCHOLOGY AND EDUCATION SERIES

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO

OUCEO EXACTLY AS RECEIVED FROM

THE PRSON OR ORGANIZATION ORIGIN.

AT
E
IT POINTS OF VIEW OR OPINIONS

STATED 00 NOT NECESSARILY REPRE

SENT OFFICIAL NATIONAL INSTITUTE OF
EOUCATION POSITION OR POLICY

Reproduction in Whole or in Part Is Permitted

for Any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305

Table of Contents

Index to Tables iv

Index to Figures

Sections

1 Introduction: Background and Motivation 1

2 Programming Facilities 10

2.1 Languages 11

2.1.1 Command Parsing and Execution 15

2.1.2 Editing and Debugging Facilities 28

2.2 Peripheral Devices 42

2.2.1 Standard Alphanumeric Terminals 44

2.2.2 Vector Graphics Terminals 46

2.2.3 Output Devices: Plotter, Turtle, Train and Audio . 52

3 Student Selection, Grouping and Tutoring 57

4 Curricula 71

4.1 Logo 75

4.2 Simper 78

4.3 Contrasts 81

5 Data Acquisition and Analysis 87

ii

6 Results 106

6.1 Understanding the Students 115

6.2 Evaluation of Simper and Logo 135

6.3 Implications for Language and Curriculum Design 142

7 Final Comments 145

Appendices 146

1 Graphics 147

1.1 TEC
(R)

148

1.2 IMLAC
(R)

151

2 Controllable Devices 160

2.1 Robot Turtle and Music Box 160

2.2 Train 163

3 Details Pertinent to the Preliminary Test 167

3.1 An Example of Commercial Evaluation 167

3.2 Sample Problems from the Preliminary Test 169

4 Sample Logo Curriculum 172

5 Sample Simper Curriculum . . 195

Acknowledgements 216

References

iii

6

) 4 OOOOOOO 217

Index to Tables

I Some Fundamental Programming Concepts 9

II Simper Machine Operations 12

III Some Logo Primitives 14

IV Simper Interpreter Commands 20

V Simper/Logo Lineediting Commands 29

VI Logo's Procedure Editing and Debugging Commands 35

VII Logo's File-manipulation Commands 38

VIII IMSSS Logo/TEC(R) Commands 45

IX IMSSS Logo Turtle-Graphics Commands 48

X IMSSS Logo Animation Commands 49

XI IMSSS Logo Train Commands 55

XII Experimental Groups 58

XIII Discussions of the Concepts in the Curricula 73

iv

Index to Figures

1. Simper and Logo Sample Dialogues 16

2. Structure of Simper's Simulated Machine 17

3. Schematic of Logo's Memory Space 25

4. An Example of Logo's Use of Its Execution Stack 27

5. Supporting Structure for the Simper Assembler 30

6. Two Uses of Simper's 'SLIDE' Command 32

7. Displaying a Simper Program's Activity 39

8. Tracing a Logo Procedure's Activity 41

9. Programming System Structure 43

10. Successive Frames from a Logo-Animation "Movie" 51

11. Schematic of the Logo-Controlled Train Layout 54

12. Some Information Characterizing the Students 60

13. Some "Wrong" Answers from the Preliminary Test 66

14. Some Novel Answers from the Preliminary Test 67

15. Student Ranking on the Preliminary Test 69

16. A Simple Quantitative Analysis of Protocols 99

17. Student Preferences 107

18. Breakdown of Students' Programming Time 109

19. Simper Students' Performance Versus Pretest Rank 112

20. Logo Students' Performance Versus Pretest Rank 114

1 Introduction: Background and Motivation

In this report, we discuss in detail an experiment which took place

at the Institute for Mathematical Studies in the Social Sciences (IMSSS)

during the summer of 1973. A brief outline has appeared elsewhere

(Cannara & Weyer, 1974). We also discuss related, informal events,

which derived from and occurred subsequent to the experiment.

The experiment attempted to study how children learn: (a) concepts

relevant to computer programming, and (b) modern programming languages.

We will discuss the languages used, why they were chosen and what the

experiment suggested in terms of the design of the languages as well as

programming languages in general. Because the particular concepts and

languages were to be taught to naive programmers, the experiment

included a significant tutoring and curriculum design project. This

phase of our work is carefully detailed. We include discussion of

several special output devices which the children controlled via their

programs in order to draw lines on paper, animate pictures on graphic

displays, move a robot, control an electric train, and synthesize sound.

We examine these devices in terms of their motivational value to

children, and hcw and to what extent they might offer means for posing

pedagogically useful problems to student programmers.

The language and curriculum design aspects of this experiment were

partly intended to lay groundwork for a subsequent, more refined study

of children's interactions with programming. Results of that

experiment and some further analyses of data from this experiment will

appear in a later report (Cannara, 1975).

1

9

It is not a new idea that children can and should learn how to

program a computer, so that they too might access its unparalleled power

as a tool for thinking. Various computer scientists have worked to

cast the computer as a personal "mathematical laboratory" (Brown, Dwyer,

Feurzeig, Kay, Papert). In 1965, Feurzeig proposed that a suitably

programmed machine could create a constructively interactive environment

with the potential to enhance a child's interest and learning in

mathematics. Since then, attempts have been made to realize such

mathematical laboratories in contexts ranging from formal logic

(Goldberg, 1973) and calculus (Kimball, 1973) to computer programming or

"mathematizing" (Feurzeig, Papert, Bloom and Solomon, 1969). In such

environments, students may enjoy broad freedom to explore, interactively

and constructively, disciplines which are frequently deprived of

substance by either the classroom lecture or traditional computer-

assisted instruction (CAI).
*

In any computerized implementation of a mathematical laboratory, a

program simulates the system of interest; the student communicates

with this simulation via a formal language. The semantics of that

language access the constructive abilities of the laboratory, the syntax

is just a new set of notational conventions. Both must be considered

carefully by the laboratory's designer and both must be mastered by the

student.

* The reader might examine Ellis (1974) or Oettinger and Marks (1969),

especially Ellis' nontechnical critique of present applications of

computers in education.

2

Of all possible mathematical laboratories, the most general are

those which give students full computational access to a computer, by

allowing them to write programs, The means for communicating with such

laboratories are programming languages, which define tools available to

anyone using the laboratories to formalize ideas. The formalization of

ideas is a fundamental aspect of mathematics. If, by a free

interpretation of Church's thesis *, any ideas which may be formalized

may be studied concretely via a computer program, then, by learning

programming in full generality, students can learn how to construct

laboratories to study any ideas they wish to think about. Furthermore,

because programming offers a way of formalizing thoughts to produce

concrete effects, students can learn something about thinking. For

this reason, we and others believe that the natural place for the

computer is in the schools, where thinking and "thinking about thinking"

(a notion promulgated by Papert) can and should be taught.

From an educator's viewpcint, the theory and practice of

computation offer ma:h: (a) the fcrmalization of ideas as sequences of

instructions, (b) methods for modelling teal-world processes, and (c)

metaphors for describing ma:hine and human information processing.

These form a nucleus of thinking techniques which expose what Papert has

termed "powerful ideas". Con:epts of programming and thinking can be

taught as natural and inseparable partners, with emphasis on improving

students' abilities to scrutinize their own thinking about the world.

* For discussions of this important conjecture, see Manna (1972) or
Minsky (1967),

The computer's ability to simulate responds to the ingenuities of

students (for example, see the work of Papert, 1970 or Brown and

Rubinstein, 1973) with the same spectacular generality it has provided

to professional researchers (good examples are in Levison, Ward and

Webb, 1973; in Toomre, 1973 and in Winograd, 1971). More recently, as

computing machinery has become cheaper and more accessible, it has begun

to pervade the high schools. It seems reasonable that this trend

should soon extend interactive computation into the elementary schools.

The foregoing remarks were meant to justify our desire to study

programming as an intellectual activity for children and programming

languages as tools for such activity. If access to interactive

computation will soon become commonplace for vast numbers of children,

at school or at home, then we certainly should be trying now to

understand how to make the most fruitful use of the technology. As a

medium for manipulating and expressing ideas, the personally accessible

computer may stand well above everything since the printing press. It

is important, therefore, to study the computer and children (or adults)

as tool and users so that the tool may be honed to maximum usefulness

(recreational, artistic or educational).

Because it is widely believed that young children can benefit

intellectually by learning programming, numerous research projects have

been set up to teach particular programming languages (e.g. Feurzeig and

Lukas 1972a; Fischer, 1973; Folk, Statz and Seidman, 1974; Milner,

* See Kay (1972a, 1972b) or Brand (1974, pp. 64-71) for one view of the

near future of computing.

4

1973 or Roman, 1972). However, apparently none has attempted to make

explicit the broad range of programming concepts and their relationship

to a student's world of thought. In such terms, many projects have

pursued hazy and sometimes arbitrary goals that concentrated on teaching

an available language through ad hoc problem-solving situations.

Little effort has been expended on generalizing those situations and the

solution strategies used. A study by Folk, et al., (1974) is perhaps

the most extensive attempt to specify relationships between programming

concepts and the development of children's thinking processes. But

their analysis is confined to classical analysis-of-variance models and

the concomitant testing of rather broad hypotheses virtually ignores a

wealth of valuable detail in student protoco.Ls -- the type of data we

value most.

Teaching programming is a tutorial endeavor. A programming tutor

must be ready to intelligently suggest, accept and comment on an

arbitrarily wide range of student interactions and program synthesis.

In any tutorial atmosphere, the details of errors made by a student are

extremely useful. They do more than indicate what the student does not

understand, they indicate how the student dews the problem at hand in

terms of his or her own view of the world,. Extending a suggestion of

Papert's, if a student responds to a posed problem at all, that response

is typically correct by the student's personal analysis. So the

student is surprised to hear "wrong". It is the tutor's responsibility

to try to divine the reasons for the student's error. This frequently

means that cut= must az.t as dyes a detective attempting to elicit

evidence from someone from a foreign land, Much of the subsequent

5

interaction must be devoted to laying a common foundation of terms --

their definitions and relations. The tutor necessarily learns

something about the student's world view and is better prepared to

handle future errors and future students.

Errors are not "bad". They provide valuable feedback to be

exploited for a student's benefit. Because students sense this and

respond positively, much of what is presently considered to be advanced

research in computer-assisted instruction concentrates on establishing

such a close relationship between tutor (albeit mechanical) and student.

The construction of programs which can tutor humans with human

proficiency has been the goal of many researchers. No one has been

fully successful yet, because the fundamental activities of a good tutor

are tied irrevocably to humanness of language and knowledge. The

theoretical power of a computer may be sufficient to simulate human

intellect, but we do not understand ourselves well enough to communicate

even a coarse description of our intellect to any recipient. Those who

have recognized the nature of this problem have come closest to success

in limited contexts (e.g. Brown and Burton, 1974; Carbonell, 1970 or

Winograd, 1971). Teaching programming is perhaps the most general

tutorial activity one could care to mechanize, so we believe that

detailed studies of students learning to program can help to

characterize tutorial interactions in generals,

Any tutor must (a) understand the subject being taught and (b)

possess a strategy for handling errors that is adaptable to the demands

set by individual students. Unfortunately, the bulk of past efforts in

6

CAI have bypassed (a) and have sought to discover techniques for

manipulating student performance (most frequently measured in ways more

convenient for the researcher than beneficial to the student) by

attacking (b) in narrow contexts (e.g. the reader should critically

examine Smallwood, 1962 or the examples used by Suppes in Wittrock,

1973). The result too often has been a simple transfer of programmed

instruction from paper or film to computer storage, applying very

little, from the student's vantage, zf the computer's computational

*
potential. Largely in conjunction with advances in artificial-

intelligence research, (a) and (b) have been attacked together (e.g.

Goldberg, 1973, Brown and Burton, 1974, Kimball, 1973).

However, any general tutorial system for teaching programming is

destined to occasionally fail the student; because of its generality,

**
it must occasionally tackle unsolvable (uncomputable) problems. In

other words, it must pass judgment on the correctness of a student's

programs, and we know that there exists no general procedure for

deciding that an arbitrary program is correct or incorrect. But a

human tutor is faced with the same situation, and the range of solvable

problems is so broad that this hard theoretical fact has discouraged

neither researchers nor teachers. "Proof of program correctness" and

"automatic program synthesis" are active topics in computational

* We agree with Dwyer (1972) who has said that CAI fails in "reproducing
the excitement of masterful teaching". We would add that only rarely

have CAI workers even attempted to capture masterful teaching.

**Discussions of the uncomputable appear in Davis (1965) and in Minsky

(1967).

7

research which have clear bearing on future success in constructing

competent computer-based tutorial systems. The work to be reported

here attempts to characterize some of the situations that human and

mechanical tutors for programming will confront and must be prepared to

resolve.

Our implicit educational goal is teaching thinking strategies by

teaching programming concepts and their applications. Ideally, a

student should look to his or her own life experience for applications

of the tools which an understanding of the concepts supplies. This, we

believe, is the ultimate justification for teaching programming. For

programming to succeed (from the students' point of view) as part of any

educational experience, we must be concerned with each student's

individual approach to it, The power of a programming laboratory

derives from the fact that students do more than interact with it, they

intervene. Through its language they formulate and activate ideas and,

in doing so, mould the laboratory to their own purposes. From

primitive tools available to them at the start, they derive new ones,

and from these, others, ad infinitum.

That programming concepts provide an invaluable link between

formalized thinking and perceived reality is certainly not a new axiom

(Berry, 1964). It was assumed, perhaps tacitly, in much of the

research quoted here. However, no study has attempted to teach a full

range of relevant concepts from computation theory (see Table I) which

we believe is essential to establishing that link. Another motivation

for our work has been a desire to contrast programming languages and how

8

Table I

Some Fundamental Programming Concepts

1. Machine as a tool manipulated with a command language

2. Machine possessing an alterable memory

3. Literal expressions

4. Name-value associations

5. Evaluation and symbol-substitution

6. Execution of stored programs

7. Programs which make decisions

8. Procedures (algorithms)

9. Evaluation of arguments to procedures

10. Procedures as realizations of functions (transformations)

11. Composition of functions

12. Partial and total functions

13. Computational context (local versus global environments)

14. Evaluation in changing environments

15. Induction (recursion and iteration)

16. Data stract:.:es as defined by functions

17. Problem formulation (representation)

18. Incomplete algorithms (heuristics)

9

they aid or hinder acquisition of the set of concepts we have said we

value. Syntactic differences among languages are of but incidental

interest. Most important is how the meanings (semantics) of a

language, accessible via its grammatical rules (syntax) and defined on

the structure of some underlying machine, can illuminate the concepts.

Furthermore, we feel there is a need to investigate the educational

value of some of the many types of devices that may be used by students

and controlled by their programs.

So, the problem we posed for research can be summarized in two

questions: (a) How do the characteristics of programming languages and

devices influence a child's motivation and ability to learn programming

concepts and apply them to the solution of problems? and (b) How do

children relate programming concepts with their real-life experiences?

2 Programming Facilities

Our tutorial structure attempted to impart an understanding of the

concepts in Table I and fluency in two, very different programming

languages. This required the development of (a) interactive

laboratories (interpreters) for the languages and devices used, (b)

parallel curricula for teaching the concepts, (c) means for acquiring

data on each student's interactions, and (d) means for assessing each

student's aptitude for programming and mastery of the concepts,

Part of requirement (a) was easily met by using existing

interpreters for two languages, Logo and Simper, developed specifically

to teach children computer programming. The development of some of the

10

devices used and requirements (b), (c) and (d) defined the work to be

done preliminary to the actual experiment.

2.1 Languages

The languages Simper and Logo were chosen because they are

computationally general, they are relatively easy to learn, they are

interactive with powerful editing features, and they are highly

dissimilar.

Simper was developed by Lorton and Slimick (1969) at IMSSS as a

simple simulation of an imaginary machine resembling an Hewlett-Packard

model 2000. It was used to teach business applications of programming

to students at Woodrow Wilson High School in San Francisco via remote

lines from the IMSSS PDP-1. Simper was implemented later on that high

school's HP-2000F in Basic. At IMSSS, it has been expanded and

rewritten in the Algol-60 subset of Sail (Swinehart and Sproull, 1971)

by the authors.

Simper, like Logo, is designed for interactive use. It is an

assembly language interpreter for a simple decimal machine with an

addressable program counter. Its instruction set typifies those of

early minicomputers and is similar to, but simpler thaa, that of the

language Mix (Knuth, 1970). As a programming laboratory, Simper has

three functional components: (1) an interpreter which handles editing

and general management of programs, (2) a real-time assembler which

translates symbols and mnemonic instructions (listed in Table II) into

machine language, and (3) a simulator for the underlying machine. This

11

Table II

Simper Machine Operations

Mnemonic Action (if not obvious)

PUT value of address field to register
LOAD copy value in addressed cell into regist?r
STORE inverse of LOAD

ADD add value in addressed cell to register
SUBTRACT
MULTIPLY
DIVIDE

LAND decimal digit-wise minimum between register and memory

LOR decimal digit-wise maximum
LEXOR "exclusive or": LOR except for equal digits

JUMP transfer to address if register is non-zero

JASK transfer to address if a key has been typed
COMPARE three-way skip on memory cell's value greater than,

equal to, or less than register's value

SHIFT
ROTATE
EXCHANGE flip contents of two registers
INCREMENT
NEGATE
ERROR overflow error code to register

ASK decimal numeral from keyboard to register

WRITE inverse of ASK
CASK ASCII character from keyboard to register
CWRITE inverse of CASK

IOT input/output transfer (for graphics etc.)

RANDOM random 10-digit integer to register

TIME seconds since midnight to registe

WAIT defer execution for milliseconds register

HALT stop execution

NOP no-operation

Typical Instructions

ASK B
ADD B 100
HALT

Each instruction may have one, two or three parts,
(1) the operation, (2) the register and (3) the address.

12

;CA

system allows students to generate and easily "debug" nontrivial

machine-language programs.

Logo (Feurzeig, et al., 1969) is a procedural language whose basic

data structures are strings of letters or words. Ir too was developed

for children and has been used extensively in educational research.

The Logo instruction set is easily expanded via procedure (command)

definitions, which may be expressed recursively. Commands which a

student defines are syntactically equivalent to Logo's primitives.

Logo contains essentials of the currently popular Basic language as a

subset, but is superior to Basic in terms of mathematical consistency,

and clarity of phrasing and control. In addition, Logo begins to

address the important question of language extensibility, which we feel

is a fundamental measure of the usefulness people can attribute to any

language for computing or thinking. Our Logo interpreter was obtained

from Bolt, Beranek & Newman Inc. (BBN) of Boston. It is written in

Macro assembly language for the PDP-10. For the purposes of our

experiment, we modified Logo to communicate with special alphanumeric

displays, a model train, an "X-Y" plotter, graphic display terminals and

the IMSSS digitized-audio system. During the experiment, several

children had access to each of these devices. As a result of obvious

student enthusiasm during the main portion of the experiment, Simper was

later also modified to access the graphics devices. A partial list of

IMSSS Logo's primitive commands appears in Table III.

In the body of this text, we use paired, siK,le quotes (*) to denote

phrases in the Lm and Simper lansua3es

13

Table III

Some Logo Primitives (* means peculiar to IMSSS)

Name Action

TO allows creation of a new operation (a procedure)

RETURN* or OUTPUT allows operations to return values to the evaluator

EDIT allows the user to change an operation's definition

MAKE associates a name with a value

*
VALUE or THING accesses the value associated with a name

FRONT
*

moves the "turtle" or train forward

*
WHERE returns the present location of the train

PLOT
*

sends turtle drawing to X-Y plotter or robot

*
SAY causes the audio system to speak a message

PRINT causes the user's terminal to type a message

REQUEST asks the user for a message

*
SNAP makes a "snapshot" of graphics picture being drawn

*
MOVESNAP moves a snapshot as part of an animated display

WORD combines two sets of letters or numbers into one

SENTENCE combines two words or sentences into a sentence

FIRST returns the first letter or wol4 in a value

RANDOM picks a digit between 0 and 9

SANEP or IS are two words or sentences identical?

EQUALP are two numbers equal?

IF THEN ELSE decision making

Typical Compound Commands

PRINT SENTENCE "THE TRAIN IS AT:" WHERE

FRONT RANDOM
IF EQUALP RANDOM REQUEST THEN SAY "GOOD GUESS" ELSE SAY "OOPS"

14

The disparate natures of Logo and Simper are demonstrated by two

sample dialogues (Figure 1) which produce alternative programs for the

repeated printing of a keyboard character supplied by the typist. In

the figure, prompts from Simper are the current memory address (a

decimal numeral) and a ":" or an "I", depending on whether the addressed

location is empty or used. Logo prompts .2 at the outer level and "@"

at the editing level, A "tG" indicates a control character typed by

the user to stop a potentially endless execution sequence.

Many readers may not be familiar with Logo and most will not be

familiar with Simper. The next two sections are intended to fill such

gaps. An appreciation of both languages should naturally grow as we

discuss the curricula, student data and results later on. The

importance of powerful editing and debugging features in Logo and Simper

should become especially apparent. As part of the analysis of student

interactions, we will discuss changes we have made, or would like to

make, to Logo and Simper. A few changes are evident in Tables II and

III, which show the states of Simper and Logo after the experiment

(e.g. after the addition of graphics capability to Simper via the 'IOT'

operation, and new, or alternate command names, such as 'RETURN', in

Logo).

2.1.1 Command Parsing and Execution

As outlined above, the Simper interpreter allows its user three

basic abilities: (1) entry cf machine-language instructions, (2) entry

of assembly-language mnemonics and symbols, and (3) various editing and

15

SIMPER LOGO

001 :PUT A 43 TO REPEAT :LETTER:

002 :NAME REPEAT @10 TYPE :LETTER:

002 ICWRITE A @20 REPEAT :LETTER:

003 :PUT P REPEAT @END

004 :RUN REPEAT DEFINED

EXECUTING 1 TO 500 REPEAT "+"
111111111111G

...23 INSTRS IN .043 SEC.

111111111MG
I WAS AT LINE 10 IN REPEAT

004 :EDIT 1 EDIT REPEAT
001 !CASK A @EDIT TITLE

004 :SLIDE 2:7 @TITLE TO REPEAT :LETTER: :TIMES:

002 :ASK B @5 TEST LESSP :TIMES: 1

003 :NEGATE B @7 IFTRUE DONE

004 :JUMP B .+2 @EDIT LINE 20

005 :HALT 20 REPEAT :LETTER: DIFFERENCE :TIMES: 1

006 :INCREMENT B @END

007 INANE 4 REPEAT REPEAT DEFINED
SWITCHING REPEAT'S REFERENCES

007 !RUN REPEAT "+" 10
EDIT REPEAT

EXECUTING 1 TO 500 @6 IFTRUE SKIP
+10 @END
IIIIII ii REPEAT DEFINED

HALT...45 INSTRS IN .117 SEC.

007 !LIST

YOUR PROGRAM:

001 :CAS A
002 :ASK B

003 :NEG B
004 :JUM B .+2 (REPEAT)
005 :HAL
006 :INC B
007 :CWR A
008 :PUT P REPEAT

REPEAT "+" 10

LIST REPEAT

TO REPEAT :LETTER: :TIMES:

5 TEST LESSP :TIMES: 1

6 IFTRUE SKIP
7 IFTRUE DONE
10 TYPE :LETTER:
20 REPEAT :LETTER: DIFFERENCE :TIMES: 1

Fig. 1. Simper and Logo Sample Dialogues.

16

other commands for

syntax of commands

section. One can

program management. For category (3), only the

will be discussed here; details appear in the next

imagine that, when the Simper interpreter is not

running a user's program, it is simply waiting for a message from the

user which either falls into one of the three categories above or is

unintelligible.

The underlying machine simulated within the Simper interpreter

operates on decimal numerals (words), some of which it "understands" as

legal instructions. The size and number of memory and register words

is adjustable whenever the interpreter is compiled. The machine's

organization was as shown in Figure 2. Each of the 250 memory cells

Registers

(10 max.) B: OCO)4,,004

A: ^i,04,687o0

(program counter) P:

Memory Cells

001:

002:

250: , (511 max,)

Instruction Format

seven digits:
o r a

p e d

e g d --(indire:t flag & address)

r i r

a

e

o r

n

Fig, 2 Structure of Simper's Simulated Machine

1 7

and each register could contain a ten-digit decimal numeral. The

program counter is simply the "P" register, whose content is usually the

memory address of the next instruction to be obeyed. That content can

be changed by any instruction which chooses to write into P.

Instructions are seven-digits in length and are partitioned (see Figure

2) into three fields: operation, register, and indirect address flag

and address.

Each operation mnemonic in Table II has a corresponding two-digit

code, each register has a one-digit code. The four-digit field used

for addressing may be filled in various legal ways, depending upon the

operation to be obeyed. For some operations, the register and/or

addresF fields are not used and can be filled out with zeros. A user

may type any legal, seven-digit instruction numeral to the interpreter

and it will be stored in the memory location whose address appeared in

the interpreter's prompt (e.g. to the left of the ":" in Figure 1), In

fact, any numeral, up to ten-digits in length, can be entered into

memory this way. Whenever such a message is stored, the next prompt

given the user will refer to the next available memory cell.

Assembly language instructions are translated (by a "real-time"

assembler) into machine language numerals which are, in turn, stored in

the prompted memory cell. The three fields of the target numeral are

synthesized from three spaced fields of mnemonics or numerals typed by

the user. In this way, machine and assembly language may be mixed

within one typed instruction. Translation of instructions which

contain no symbols (no names such as 'REPEAT' in Figure 1) is direct.

18

Symbolic addresses are looked up in a symbol table which is up-dated

each time the 'NAME' command is used. Because real-time assembly must

account for possible editing changes, a symbol may be used in an address

field before 'NAME' has identified it with a cell. In such a case, the

address field of the machine instruction is zero and another table, with

an entry for each memory cell, is marked to show that the instruction

must have its address field "fixed up" if the symbol ever becomes

attached to some cell. This additional table, parallel to memory, is

also used to hold intormation on relative addresses, comments entered

with instructions, and which cells are named. The need for such extra

storage, invisible to the user, will become clearer when Simmer's

editing features are discussed in the next section.

Program management is handled by a set.of immediately executable

commands (Table IV). These cannot be executed from within a user's

program, and so may be considered a separate language. Syntactically,

however, they axe similar to assembler instructions. They may have one

to three fields (e.g, 'LIST', 'DUMP 4:D0+1', and 'NAME 4 REPEAT'), the

latter two of which are subject to assembler addressing syntax (plus the

range operator ":", read as "to").

Execution of Simper programs is initiated with the 'RUN' command or

continued with 'GO'. The value in register P is always used as the

address from which to fetch the next instruction, and it is incremented

by one just before that instruction is executed. Errors detected at

this time are: (1) an illegal program-counter value, (2) an attempt to

execute a noninstruction, or (3) a zero address resulting from failure

19

Table IV

Simper Interpreter Commands

Name Action

DUMP display decimal content of memory and registers
(symbols too)

LIST or DEBUG display memory content in assembly language
(and machine language, DEBUG shows "secret" tables)

RUN execute part or all of a program (and display registers)

GO continue execution (and display registers)

EDIT or FIX

SLIDE

SCRATCH

NAME

change the content of one or more memory cells
(and show prior content)

relocate part or all of a program in memory

erase part or all of a program

attach a symbol to a memory cell
(and say how much room remains for symbols)

FORGET erase a symbol

NAMES list all symbols and their associations
(and their values)

SAVE write memory onto long-term storage

GET inverse of SAVE

FIELDS allow abbreviated instructions

NEWS obtain the latest system news

HELP obtain general information about Simper

GOODBYE log out

control-G stop any activity

Parenthesized phrases describe options explained in the text.

20

to use 'NAME' to bind a symbol to a cell. If an error message is

generated, execution is stopped. During execution, other kinds of

errors, such as overflow, may occur which may or may not cause a halt.

If there is an error halt or a user interruption, P's value is saved.

The user can edit the program and then type 'GO' to continue execution.

The effect of executing an individual instruction may be a change

in the values in registers or in memory cells, but not in both types of

storage. 'STORE' and 'LOAD' copy values nondestructively in opposite

directions between registers and memory cells; 'EXCHANGE' flips the

values in two registers; IIOTI may copy or change more than one memory

cell; and 'NOP' does nothing. For arithmetic and logical operations

('ADD' through 'LEXOR' in Table II), results of a computation are always

left in the register mentioned in the instruction's register field.

'DIVIDE' is a special case because it computes both a quotient and a

remainder, leaving them respectively in the mentioned register and the

one adjacent to it.

Logo's interactive structure is more nearly unitary. Its basic

piece of executable code is a line composed of one or more commands, and

its basic piece of program or procedure (operation definition), is a

series of lines. The Logo interpreter is always executing (or capable

of executing) a user's commands, which may call upon Logo primitives or

the user's own procedures. Control returns to the user only when his

or her last command and any commands it might have called have

terminated naturally or been aborted. A few of Logo's primitives may

not be executed directly by a user's procedure, but there is not a

21

strict distinction between two sets of commands as exists in Simper.

However, a quitk in Logo's aviluaticn scheme imposes a different syntax

on editing and management :ommands versus c*her primitives and user

procedures. We will discuss this later when we take up questions of

language design,

A command to the Logo interpreter consists of two parts: (1) the

command name (operation) and (2) an argument list, (e.g. 'PRINT

"HELLO"). The appropriate number of arguments must appear after each

primitive operation or user-procedure name in any syntactically legal

command. Thus, Logo is inherently a prefix language. Evaluation of

non-editing commands is fully general: arguments may be supplied by

constants, vatiaolas or executable commands (see the bottom of Table III

for some examples).

The bast: data structure in Logo is the character string. This is

broken into two subclasses: words and sentences. A Logo sentence is

any string containing words separated by spaces. A Logo word is any

string of le::ters, digits and pun:tuetion. Numerals are simply a

subclass of words, Alth:11)gh Logo's arithmetic operations are

restricted to integers, arguments may be :2 arbitrary length (i.e.

unlimited magnitude).

There are three ways t: access data in Logo: (1) as constants, (2)

as values returned by executed commands, and (3) as values associated

* The Irarsisn of Logo used in this experiment also allows infix notation

for arithmetic operations like: '3+4', but we felt this to be an

inconsistent feature and disabled it, e.g. to allow only: 'SUM 3 4'.

22

30

with names. Constants (literals) are either quoted strings or signed

numerals. A quoted string may be a word or a sentence. Quoted

numerals are treated as if they were unquoted. Any value that may be

expressed as some combination of constants, named values, or values

returned by commands may itself be returned by a command, or be

associated with some name (see Table III and Figure 1 for some

examples). A value is associated with a name by instantiation of a

procedure's argument, or by the 'MAKE' operation (e.g. 'MAKE "CAT"

"MEOW "). It is referenced by the 'THING' or 'VALUE' operation or by

surrounding the name with colons (e.g. the two commands: 'PRINT VALUE

"CAT"' and 'PRINT :CAT:' would each produce "MEOW"). Values may also

be used as names, allowing any depth of indirect addressing (e.g.

executing 'MAKE :CAT: "NOISE"' would allow 'PRINT :MEOW to produce

"NOISE").

Logo stores procedure (operation) names and names of values

distinctly. This allows constructions like: 'PRINT :VALUE:', which

does not execute the 'VALUE' operation. Procedure text is only

accessible via certain operations, but, with these, programs can modify

themselves. A schematic of Logo's memory space appears in Figure 3.

A procedure is defined by the user with the 'TO' operation, which

expands Logo's internal dictionary of the operations it can obey. A

procedure definition takes the form of a title and a body. The title

states the name of the new operation and the names to associate with any

values it should expect as arguments. The body consists of a sequence

of numbered lines. Each line is itself a Logo command; line numbers

23

serve as editing handles and define the sequence in which the lines will

be executed.

Evaluation of a Logo command implies execution of at least the

operation(s) named and perhaps other commands, as arguments or possible

side effects. Because of the prefix nature of Logo's syntax, Logo

processes a zommdnd in two steps, first parsing left to right until a

subcommand is found which has sufficient input arguments for execution,

and then returning values from right to left as it executes any

subcommands suspended for want of computed arguments. Often these two

steps will alternate as a command is obeyed. Implicit in this

processing scheme is a mixture of evaluation and execution mediated by

an ability to preserve, and later restore, the information associated

with any subcommand(s) :chose execution must be suspended when other

execution is called fzr. This processing naturally extends to user

procedures which mil other procedures, use primitives, or call

themselves, A :::.arifying example f:llows

The uncle -lying strunure which allows Logo's form of processing is

the "execution sraA" in Figure 3 -- a standard "last-in-first-out" data

structure (eg Evey, 1963). Inf:rmalon enters and leaves the stack

only via its "topmost" cell. As Logo pzeserves information pertaining

to commands whse exe:ution has been suspended, the stack acquires the

executiln history cf a program as a list of things left undone -- most

recent history on top. Normally, information added to the stack is

later removed, because susperAdad commands axe eventually obeyed. The

stack is usually empty both before and after a user's command to Logo

has been :bayed.

+
user procedure

UUUUU
user abbreviations

UUUUU
primitive Logo

definitions (modifiable) operations
-+ +

(editable) UL L
-+ UL L

u U UUUUUUUUUUUUUUUUUUUUUL L
u U ULLLLLLLLLLLLLLLLLLLLL L
u U UL
u U UL
u U + -+ Logo names &
u UUUUUUUUUUUU1 execution stack 1

u + -+ abbreviations
u uL + -+
u uL L
u uL L
u +-
u

u

-+

Logo
L
L

L
uuuuuuuuuuuuuuuuuuuuu string LLLLLLLLLLLLLLLLLL

space

-+
-U

U

user names

(modifiable)
-+

Legend,

LLL denotes a link that L..ID can exploit
UUU denotes a link that the user can exploit
uuu denotes a link to which the user has partial access

Fig., 3. Schematic of Logo's Memory Space.

25

Readers unfamiliar with this evaluation method are urged to use

Figure 4 to follow the effect of the command: 'PLAY', assuming the two

procedure definitions:

TO PLAY
10 TYPE "WHAT NUMBER AM I THINKING OF?"
20 PRINT GUESS RANDOM REQUEST
END

TO GUESS :IT: :THAT:
10 IF EQUALP :THAT: :IT: THEN RETURN "WOW" ELSE PRINT "TRY AGAIN"
20 RETURN GUESS :IT: REQUEST
END

They are printed here exactly as a user would have typed them to Logo.

As part of our results, we will consider student errors related to

Logo's command-evaluation method.

Whenever 'GUESS' is executed, it expects to receive two input

values (via the stack) which it will associate with (bind to) the names

'IT' and 'THAT'. Whenever 'IT' or 'THAT' is evaluated (e.g. line 10),

*
Logo searches the stack for the first (latest) such binding. The 'IF

... THEN ... ELSE ...' structure is an execution selector -- 'IF'

receives either "TRUE" or "FALSE" from 'EQUALP', causing Logo to execute

either the command marked by 'THEN' or that marked by 'ELSE'. Here

'GUESS' either may return a value ("WOW") by replacing its own name in

the stack, or it may defer returning a message and call on itself (line

20) recursively. This creates a new copy of 'GUESS' on the stack

without destroying the old copy. When 'RETURN "WOW"' is executed by

* Logo is derived from Lisp, so inputs are not "local variables" in the
Algol sense, although locals may be defined in Logo.

26

(a) Logo about to execute line 10 in PLAY (b) line executed

top---1."WHAT NUMBER AM I THINKING OF?"
I_TYPE (awaiting 1 input)
l_PLAY (resume after line 10)

(c) starting RANDOM

LRANDOM
I_GUESS (awaiting 2 inputs)
I_PRINT (awaiting 1 input)
I_PLAY (resume after line 20)

(e) starting EQUALP

1_3 (latest value for "IT" on stack)
tE2 (latest value for "THAI ")
EQUALP
IF (awaiting 1 input)

__:THAT: : 2 (GUESS' 2nd input binding)
__art e 3 (GUESS' 1st input binding)
__GUESS (resume after line 10)
__PRINT (waiting)
--PLAY (to resume)

(g) starting the "ELSE" part

I:TRY AGAIN"
PRINT
:THAT: A 2
:IT: m 3
GUESS (to resume)
PRINT (waiting)
PLAY (to resume)

(i) copy returning "t1OW"

I."WOW"
fERETURN

:THAT: = 3
sIT: a :7,

GUESS (resume after line 10)
RETURN (waiting)

..:THAT: e 2
4.:I2I in 3

...GUESS (to resume)

...PRINT (waiting)
I_PLAY (to resume)

1FLAY (resuming)

(d) starting GUESS

1_2 (returned by REQUEST)
1_3 (returned by RA.Do)
I_GUESS
I_PRINT (waiting)
I_PLAY (to resume)

(f) starting IF

1."FALSE"
1IF
I.:THAT: 2

I.:IT: = 3
I_GUESS (to resume)
I_PRINT (waiting)
I_PLAY (to resume)

(h) GUESS calling GUESS

t

3 (returned by REQUEST)
3 (latest binding of IT ")
GUESS (new copy)
RETURN (awaiting 1 input)
:THAT: at 2

4_,IITI s 3
GUESS (to resume)
PRINT (waiting)

I_PLAY (to resume)

(J) GUESS returning "WOW"

4..."WOW"

I_RETURN
I.:THAT: 2
I.:ITs a 3
I_GUESS (to resume)
I_PRINT (waiting)
I..PLAY (to resume)

(k) about to complete PLAY

PRINT
PLAY (to resume)

Fig. 4. An Example of Logo's use of Its Execution Stack.

27

some copy of 'GUESS', a virtual bucket-brigade sends "WOW" back to

'PRINT' (in 'PLAY') by removing information from the stack as each

suspended 'GUESS' returns (line 20). A procedure may also simply

execute without returning a value. 'PLAY' does this by default (by

running out cf lines); equivalently, it could have contained a line 30

which just said: 'DONE'. Alternatively line 30 could say: 'PLAY'.

The reader should pursue the effect of that change.

2.1.2 Editing and Debugging Facilities

In both Simper and Logo, editing may be categorized as either: (1)

line editing, or (2) program editing. Most of the basic line-editing

abilities in either language arise from a machine instruction peculiar

to the IMSSS time-sharing system.

A "line" is any string of keyboard characters terminated by any of

a small set of keys (e.g. carriage return). As Table V suggests, a

line may be edited or extended before such termination by any of several

"control- characters ". As the Table indicates, some commands were

implemented only in Logo. Commands like "control-N" mesh well with

Logo's sentences, but were not needed in Simper because of the short,

simple nature of Simper's instructions.

Program editing in Simper is mediated by: (1) program-displaying,

and (2) program-altering commands (again see Table IV). 'DUMP', 'LIST'

and 'NAMES' fall into category (1). Since a program is stored as

numerals in memory (viewable with 'DUMP'), 'LIST' must translate

numerals back into assembly language whenever they appear to be legal

28

Table V

Simper/Logo Line-editing Commands (* means Logo only)

Name

control-A or
rubout

control-W

control-X

control-R

linefeed

return or
altmode

control -N

control -S

*
control -E

Action

erases the previous character typed

erases the previous word typed

erases the whole line (also control-U in Simper)

retypes the present line minus deletions

continues a line beyond 72 characters

terminates a line (altmode is also known as "escape" or
"enter ")

insert (into the present line) the next word from the
previous (or edited) line

skip the next word from the previous (or edited) line

insert everything remaining in the previous (or edited)
line into the present line

instructions. This is true even for instructions which can be

generated ambiguously. For example: 'ADD A 100', 'ADD A IT+2' (where

098 is named "IT") and "101 :ADD A .-1" all translate into: '2110100'.

How then to translate '2110100' back into the form that the user

obviously preferred? That is facilitated by a table, parallel to

memory. Among other things, each cell in this table holds information

about the nature of the address referenced by the instruction in its

companion memory cell (see Figure 5). If the user types an assembly

language instruction containing a relative and/or symbolic address, the

appropriate entries are made in the table as the instruction is

assembled into memory. Note from Figure 5 that if an address field

29

Symbol Table

-4.

name I address

name I address

Remarks

+------+

text

text

Auxiliary Table

+111111
-+

Memory

+-

- - 001 -- value

- - 002 --

- - 003 --

value

which 1 which 1 sign 1 relative 1 symbol
name? remark? offset addressed

Fig. 5. Supporting Structure for the Simper Assembler.

names a
cell?

contains a symbol, a pointer into the symbol table is stored; if it

contains a relative offset, the amount and sign are stored.

Furthermore, if a cell has a name or a remark (comment) associated with

it, that information is stored as well. Although the auxiliary table

is inaccessible to the user (normally ignorant of 'DEBUG'), it provides

a valuable service to 'LIST' for its task of reconstructing assembly

listings. It also facilitates other editing services, as we will

mention. The symbol table may be inspected by the user with the

'NAMES' command -- the addresses and contents bound to all symbols are

displayable.

A program may be altered by any of: 'EDIT', 'SLIDE', 'SCRATCH',

'NAME' and 'FORGET'. 'EDIT' effer.tively places the user anywhere in

Simper's memory so that any number of contiguous locations can be given

new contents. When all the requested locations have been visited,

'EDIT' returns the user to the address from which the original command

was given. For example: "003 :EDIT 5:7" would prompt "005 :" through

n
007 :" and then return to "003 :". One may see the present content of

a location to be edited by terminating an 'EDIT' command with the

"altmode" key rather than the "carriage return". The standing rule in

Simper is that terminating a command with "altmode" is equivalent to

requesting whatever extra information that command can supply. The

extras are parenthesized in Table IV

'SLIDE' is the most powerful editing command available in Simper.

It allows one tc relo_ate a block of code in memory without having to do

additional editing to tix up addresses which point into or out of that

block, A program is essentially executable after any 'SLIDE'.

Examples appear in Figure 6. The command can move a block (a

contiguous group of non-zero memory values) either forward (to higher

addresses) or backward (to lower addresses) in memory. A move forward

allows the user to create an empty region for insertion of new code. A

move backward destroys any old code in the region covered by the new

31

(a) Opening up space for new instructions:

before the command: 'SLIDE 3:5', and after

001 :ASK A 001 :ASK A

002 :MUL A 10 002 :MUL A 10

003 :ADD A 6 003 :

004 :WRI A 004 :

005 :PUT P 1 005 :ADD A 8

006 :9 006 :WRI A

007 : 007 :PUT P 1

008 : 008 :9

009 : 009 :

010 :2 010 :2

(b) Replacing an undesired sequence of code:

before the command: 'SLIDE 5:3', and after

001 :ASK A 001 :ASK A

002 :MUL A 10 002 :MUL A 10

003 :JUM A . +1 003 :ADD A 6

004 :PUT A 1 004 :WRI A

005 :ADD A 8 005 :PUT P 1

006 :WRI A 006 :9

007 :PUT P 1 007 :

008 :9 008 :

009 : 009 :

010 :2 010 :2

Fig. 6. Two Uses of Simper's 'SLIDE' Command.

position of the relocated block. If one wishes to erase but not move a

certain region in memory, then 'SCRATCH' is useful. Both 'SLIDE' and

'SCRATCH' appropriately revise the supporting tables (in Figure 5).

Symbols are created with 'NAME' and destroyed with 'FORGET'. Any

memory cells may be named. 'NAME' writes the symbolic name and it's

associated cell's address into the symbol table. A symbol also may

spring into existence if it is used in the address field of an

instruction. In such a case, the name is entered into (or matched in)

the symbol table and a pointer to it is installed in the proper cell

(Figure 5, subcell: "symbol addressed") of the auxiliary table. If

'NAME' has not yet been used to tie that symbol to some memory cell,

then both the address field of the assembled instruction and the

"address" subcell of the symbol table entry must remain blank. This

condition is indicated by setting the "names a cell?" subcell to "no".

Should the symbol ever be tied to a cell, the assembler searches memory

and "fixes up" the address fields of instructions so marked. The

association of a symbol may be moved from one memory cell to another

with 'NAME'. This may also result in reassembly of the address fields

of some instructions.

'FORGET' cannot erase a name from the symbol table as long as that

name is referenced in any address field. This is designed to protect

the user, lest he or she suddenly be confronted with many instructions,

in a complicated program, whose address fields .Are redundant and/or

meaningless

Some miscellaneous sommanda are available to the Simper programmer.

A program may be saved on and later retrieved from the operating

system's long-term storage by using 'SAVE' and 'GET' respectively.

This entails saving only the essentials needed tc reconstruct the tables

depicted in Figure 5. Another command: 'FIELDS' can be used to reduce

the typing needed for instructions which use the A register. This

command is a toggle which, when turned on, tells the assembler: "I want

33

'A' in the register field unless I say otherwise.
It

For example, with

the toggle on, the first program in Figure 6 could have been typed:

ASK
MUL 10

ADD 6
WRI
PUT P 1

and it would have been so listed (by 'LIST') as long as 'FIELDS' was not

used to reset the toggle. This feature provides a convenient

simulation of a single-register machine. Finally, one of the most

important commands available to the user is "control-G", which aborts or

nullifies the effect of any other command and returns the user to the

outer level of the Simper interpreter.

Since the basic piece of any Logo program is the procedure, program

editing in Logo amounts to procedure creation, deletion and

modification. 'TO' and 'ERASE' handle the first two activities, while

'EDIT' and several contingent operations (Table VI) handle the latter.

The interpreter enters editing mode (signified by the prompt: "@", see

Figure 1) whenever a 'TO' or an 'EDIT' command is given. During

editing, any other executable Logo command may be given. In fact, some

operations (indented in Table VI) only have meaning in this context, and

several expect input messages that define their scope (Figure 1 should

be examined together with Table VI). However, the syntax of these

commands does not match that outlined in the previous section. In the

available version of Logo, inputs to operations like 'TO' or 'EDIT' are

not subject to normal evaluation rules; rather, they are quoted by

default. For instance, it is not possible to directly pass the name of

34

Table VI

Logo's Procedure Editing and Debugging Commands

Name Action

TO begin defining a new procedure

EDIT begin modifying an existing procedure

TITLE redefine the name of the procedure and its inputs

EDIT TITLE change part of the title

LIST TITLE display the title

EDIT LINE change part of any line in the procedure

ERASE LINE delete any line

LIST LINE display any line

END stop editing the procedure's definition

LIST display any procedure's definition

ERASE delete any procedure's definition or trace

ERASE ALL delete all definitions
PROCEDURES

LIST ALL
PROCEDURES

display all definitions

LIST CONTENTS display the titles of all defined procedures

LIST ALL display tne user's abbreviations for all opanations
ABBREVIATIONS

TRACE display a procedure's argumentsi-zeturned value whenever
is is executed

BREAK halt execution (same as control-G)

EXIT halt and print a message

GO continue execution

Indented ,:cmmands may only be given after editing has been begun with
'To' ex 'EDIT'.

35

a procedure to be edited (e.g. 'Y') via a value bound to some variable

(e.g. 'EDIT :X:' isn't legal, 'EDIT Y' or 'DO SENTENCE "EDIT" :X:' are).

Logo saves the full text (expanding abbreviations) of lines and

titles of procedures as the user defines them. The interpreter does

not regenerate listings from some internal code as Simper necessarily

must. This conveys two benefits: (1) the user may write procedures

which in turn copy, edit or write new procedures, and (2) the Logo

interpreter readily brings forth any parts of lines to be edited. (1)

derives from normal Logo primitives, while (2) derives from the

implementation of "control-N", "control-S" and "control-E" (Table V).

These three commands can access a stored line and control its injection

into the user's typing. Since procedure lines and titles are stored,

old lines can be used to construct new ones. Suppose for example, that

one wishes to edit the one line in the existing procedure listed below

and add a new, similar line.

TO WELCOME
10 SAY "HELLO THERE"

The command: 'EDIT LINE 10' causes the line number "10" to be printed

and inserted into Logo's input buffer just as if the user had typed it.

Thus the line number may be erased or changed. At this time, Logo has

grabbed the existing text of line 10 and knows 'SAY' to be its first

word. Here is the editing sequence which produces line 20 by using

line 10 ("t" means "control-", Logo's typing is in lower case, deleted

characters are in brackets):

10 [01)20 iNsay "tStNthere" ["j GOES A WELCOME"

36

Normally, the control characters are not printed on the user's terminal

and, on graphics displays, deleted characters simply disappear. The

procedure would now have the lines:

TO WELCOME
10 SAY "HELLO THERE"
20 SAY "THERE GOES A WELCOME"

If the user were now to type "control-E", the entire text of line 20

would be made available again for editing. This is because Logo always

sequesters a copy of the last line terminated by the user. Its text is

available at any time until another line terminator is typed. Because

all line-editing commands operate independently of procedure-editing

commands, one can, for instance, type:

SAY "GOODBYE"
30 tEsay "goodbye"

to test a command before storing it as a line in the procedure being

edited. Such access to previously typed lines can save the user much

typing and reduce typing errors.

Logo also has provision for saving programs on and restoring them

from the operating system's file storage (see Table VII). The

structure is more complex than Simper's, allowing all of Logo's memory

(all procedures, bindings and abbreviations) to be saved as an "entry"

on a file. Each file may have many entries and more than one entry may

be read into memory at once, thus allowing programs to be combined.

Files may be examined and entries may be erased without being read into

active memory. The syntax of these commands is like that of the

31

Table .VII

Logo's File-manipulation Commands

Name Action

SAVE replace an entry on a file with the current
contents of memory

GET append the content of an entry to memory

LIST FILE display the entry names in a file

LIST ENTRY display everything in an entry

LIST PROCEDURES display only the procedures in an entry

LIST CONTENTS display the titles of an entry's procedures

LIST ABBREVIATIONS display the abbreviations in an entry

ERASE ENTRY delete an entry from a file

COPY copy a text file to or from a file entry

editing commands discussed above. Later, vn will discuss the effect on

students of that and of the relative complexit; of Logo's filing system.

The user can supply new abbreviations, or use those which Logo has

built in, for relatively wordy Logo operations such as those listed in

Tables III, VI and VII.

Debugging. Program debugging in Simper is facilitated primarily

by using the register displaying option of the 'RUN' command (Table IV),

which is activated by terminating the command with the "altmode" key.

Also, the user may stop a program at any point with "control-G", examine

memory and register values with 'DUMP', 'LIST' or 'NAMES', perhaps do

some editing and then continue the execution with 'GO'. Stopping a

38

program in this way does no violence to the state of the machine; the

program counter (P) is always saved to anticipate the use of 'GO'. The

user may continue execution for a specific number of instruction cycles

(e.g. 'GO 5') .ad/or alternate execution periods with the register

display on and off. He or she also may run selected portions of a

program (e.g. 'RUN 4:12') to check their operation. In Figure 7, we

show a typical display for a run of the first program in Figure 6.

007 :RUNS ("s" denotes altmode)

13:04:12 (the time)

EXECUTING 1 TO 500

P: A: B: INSTR:

1 0 0 ASK A INPUT NUMBER:4 ("4" typed by user)
2 4 0 MUL A 10
3 8 0 ADD A 6
4 17 0 WRI A NUMBER=17
5 17 0 PUT P 1
1 17 0 ASK A INPUT NUMBER:0
2 0 0 MUL A 10
3 0 0 ADD A 6
4 9 0 WRI A NUMBER=9
5 9 0 PUT P 1
1 9 0 ASK A INPUT NUMBER: -4
2 -4 0 MUL A 10
3 -8 0 ADD A 6
4 1 0 WRI A NUMBER=1
5 1 0 PUT P 1
1 1 0 ASK A INPUT NUMBEROG (user aborts)

INSTRS IN 1.100 SEC

007 :GO 4 (continue a bit with no display)
2

13

...4 INSTRS IN .042 SEC

Fig. 7. Displaying a Simper Program's Activity.

39

Without this display, the user's program has full control over the

formatting of its output.

Program debugging in Logo centers on the use of the commands

'TRACE' through 'GO' of Table VI. "Control-G" and 'GO' have the same

functions in Logo as in Simper, although 'GO' did not always work

successfully in our version of Logo. 'EXIT' and 'BREAK' are simply

ways of returning control to the user when some condition defined by the

user occurs. 'TRACE' is the most important debugging command in Logo.

It allows the user to follow a particular procedure's (but not a Logo

primitive's) execution history, observing its arguments when it is

called and the value it returns when it is done. For recursive

procedures, each copy is so observable. Figure 8 shows an example

generated by the commands: 'TRACE ACKERMAN' and 'PRINT ACKERMAN "XX"

"Y", that executed the procedure:

TO ACKERMAN :X: :Y:
10 IF EMPTYP :X: THEN RETURN WORD :X: "Y"
20 IF EMPTYP :Y: THEN RETURN ACKERMAN BUTFIRST :X: "Y"
30 RETURN ACKERMAN BUTFIRST :X: ACKERMAN :X: BUTFIRST :Y:

realizing a string example cf Ackerman's function. In the figure,

inferior context (a copy) is indicated by indentation. The reader

should try to justify the traced execution sequence with the procedure's

definition and its first call. Notice that 'ACKERMAN "XX" "Y"' first

causes the execution of 'ACKERMAN :X: BUTFIRST :Y:', at the end of line

30; that call is the next indented line in the trace.

40

TRACE ACKERMAN
-PRINT ACKERMAN "XX" "Y"_PRINT

OF "XX" AND "Y"
ACKERMAN OF "XX" AND ""
ACKERMAN OF "X" AND "Y"
ACKERMAN OF "X" AND ""
ACKERMAN OF "" AND "Y"
ACKERMAN RETURNS "YY"

ACKERMAN RETURNS "YY"
ACKERMAN OF "" AND "YY"
ACKERMAN RETURNS "YYY"

ACKERMAN RETURNS.DYYY"
ACKERMAN RETURNS "YYY"
ACKERMAN OF "X" AND "YYY"

ACKERMAN OF "X" AND "YY"
ACKERMAN OF "X" AND "Y"
ACKERMAN OF AND ""

ACKERMAN OF "" AND "Y"
ACKERMAN RETURNS "YY"

ACKERMAN RETURNS "YY"
ACKERMAN OF "" AND "YY"
ACKERMAN RETURNS "YYY"

ACKERMAN RETURNS "YYY"
ACKERMAN OF "" AND "YYY"
ACKERMAN RETURNS "YYYY"

ACKERMAN RETURNS "YYYY"
ACKERMAN OF "" AND "nu"
ACKERMAN RETURNS "YYYYY"

ACKERMAN RETURNS " YYYYY"

ACKERMAN RETURNS "Tray" (to PRINT)
YYYYY

Fig. 8. Tracing a Logo Pro:;edure's Activity.

Ackerman's function was chosen because it provides a general

exercise for Logo's tracing ability. The Logo procedure in Figure 1

and that used for Figure 4 are not as suitable because they are "last-

line" recursions. The processes they realize are essentially

iterative. They do not make use of the local context which is saved

when a new copy of a procedure is recursively called and the calling

copy is suspended. In contrast, note the sequences like: 'ACKERMAN

41

RETURNS ...', 'ACKERMAN OF ...' in Figure 8 (generated by the recursive

calls in line 30) and note the values supplied as arguments for each

call. In fact, some operations, like Ackerman's function, cannot be

expressed clearly in iterative fashion and thus are difficult to

formulate in the syntax of languages (e.g. Basic or Fortran) which do

not provide for recursively defined algorithms.

The user can, of course, trace as many procedures as necessary for

debugging a program. Moreover, debugging during program synthesis is

facilitated by the line-editing commands like "control-N" that were

discussed earlier. Since Logo will always execute a direct command,

even when defining a procedure, the user can try a number of command

lines until one has the desired effect, and then he or she can type a

line number and "control-E" to copy that.last, workable line into the

procedure's definition. This is helpful when writing procedures which

draw or engage in some actions that must be subjected to fine tailoring.

2.2 Peripheral Devices

In the following sections we provide information about the various

terminals and controllable devices available to Logo and Simper students

both during and after the experiment (Figure 9). We also mention

examples of how each deliice can be employed in solutions to posed

programming problems. On occasion, sample programs are included -- the

reader should refer back to the previous sections if their meaning is

unclear. In a later section we will evaluate the usefulness of each

device based upon our experimental observations.

42

PDP-10 Operating System

IMSSS Student System

/ \
/ \

/ \
Logo Simper

/ \ \

TEC
(R)

Sailogo .

.

. .

\ . \ .

. \ . \ .

. \ . \
Turtle Audio Train Plotter Teletype

(R)
IMIAC

(R)

Dotted lines mark connections made after the 1973 summer experiment.

Fig. 9. Programming System Structure.

For communicating with devices like the IMLAC
(R)

, Train and

Audio, the machine-language Logo interpreter was modified to dispatch

pertinent commands to another programySailogo (Figure 9). This

program runs as a coroutine (an "interim: fork" in Tenex terminology) to

Logo. Logo and Sailogo each possess 256-kiloword, virtual memory

spaces which are independent except for one shared "page" of 512 words.

This shared space is used for the intercommunication of commands,

results and error messages. When Logo traps a command to be

interpreted by Sailogc (e.g. 'SAY "HELLO"), it puts the operation code

and any arguments into the shared page, starts the Sailogo process, and

suspends itself until Sailogo replies and terminates with an appropriate

response. Hence, Logo's primitive control of special devices is

realized by Sail procedures.

43

2.2.1 Standard Alphanumeric Terminals

The slow (10-characters-per-second), noisy, reliable and inexpensive

Model 33 Teletype
(R)

was the basic means for communicating with Logo

and Simper for students in three of the experimental groups. In spite

of its obvious drawbacks it was in plentiful supply and provided paper

printout for projects whose results students wanted to take home (e.g.

posters). After they had mastered the basic concepts of Logo and

Simper, students could spend soma time using the more exotic terminals

and devices as they were available. Some students retained a

particular liking for teletypes, because the mechanical bedlam generated

by an operating teletype fascinated them.

Th e TEC (R) is a fast (several hundred characters-per-second), text-

oriented, video display with capabilities for cursor positioning and

line or character insertion and deletion. Because these terminals were

neither usually available nor centrally located, students used them

infrequently. However, we will outline several examples of Logo

programs which exploit the TEC's capabilities (see Table VIII, or

Appendix 1.1 for a summary of the relevant IMSSS Logo commands). For

example, one student defined a "TEC-turtle" which interpreted commands

similar to the robot and IMLAC
(R) line-drawing instructions. His

turtle was simply an outline in characters. It could rotate in

multiples of 45 degrees and leave a trail of characters as it moved.

Another student developed a "twinkling sky" program which randomly

placed and erased characters on a TEC's screen.

44

Table .VIII

IMSSS Logo/TEC
(R)

Commands

Name Action

CLEAR erase screen and put cursor in upper left corner

UP move cursor up one line (with wraparound)

DOWN move cursor down one line (with wraparound)

LEFT move cursor left one character (with spiral wraparound)

RIGHT move cursor right one character (with spiral wraparound)

HOME put cursor at upper left corner of screen

MOVEXY put cursor at an absolute screen position (in 80 by 24)

BLINKON start screen blinking to right of and below cursor

BLINKOFF terminate blinking region at present cursor position

BOX type a "box" character (all character dots on)

DELETECHAR ecase character on cursor and move rest of line left

DELETELINE erase line cursor is on and move lower lines up

ERASEDOWN erase screen to right of and below cursor

ERASERIGHT erase rest of line to right of cursor

INSERTCHAR insert a blank character at cursor position

INSERTLINE insert a blank line at cursor position

The activity a procedures which manipulate Logo words and

sentences can be visually seen by writing the procedures so that they

provide graphic output of internal string ma_hinations. For example,

students could watch a prnram move the TEC's cursor from charactex to

character as it searched for certain chalactets which it then deleted

both from the Logo word and the display screen. Elevator (see Appendix

45

53

1.1) and "drunken walk" simulations were also done. With the TEC

display, it is possible to produce simple animations of a program's

activity.

2.2.2 Vector Graphics Terminals

From 9:00 AM to 11:00 AM on weekdays, five IMLAC (R) PDS-1 vector

displays were reserved for two of the five experimental groups. The

PDS-1 is a computer in its own right, but students used it only as a

"smart" interface to the PDP-10 (see Appendix 1.2 for details on the

PDS-1 and on the Logo interface to our graphics system). The IMLAC-

graphics line-drawing system was implemented to emulate many abilities

of the robot turtle developed at MIT and BBN (Feurzeig and Lukas,

1972b). It lacks the mechanical robot's touch sensors (although these

could be simulated by graphic constraints), but allows movement to be

specified by "X,Y" end-points in addition to the turtle's normal,

roving-polar-coordinates scheme (in which movement is specified by

'FRONT' and 'BACK' along an angular beading changed by 'RIGHT' and

'LEFT'). For example, to draw a square, one might write the following

Logo procedure:

TO SQUARE :SIZE:

10 FRONT :SIZE:

20 RIGHT 90
30 FRONT :SIZE:
40 RIGHT 90
50 FRONT :SIZE:
60 RIGHT 90
70 FRONT :SIZE:
80 RIGHT 90
END

Students can change the IMLAC turtle's appearance with 'SEE', 'HIDE',

46

'POKE' and 'UNPOKE' (see Table IX and Appendix 1.2 for a description of

IMSSS Logo's turtle-graphics primitives). The graphics turtle can

leave a trace ('PENDOWN'), or not ('PENUP'), as it moves. The last

lines drawn may be erased by 'ZAP' and 'ZIP' commands, permitting

limited picture editing as well as primitive animation. For instance,

one student produced a short sequence showing a fuse "burning" down

(disappearing into) and exploding a firecracker.

'PLOT' allows one to direct the effects of most graphics commands

to either an HP7202A plotter or a robot turtle. Most students highly

valued the ability to reproduce on paper what their programs had drawn

on the display scr=eens.

During the experiment, it became apparent that more powerful

animation abilities would be possible and might serve as strong

motivation for more complex student projects. At the end of the summer

experiment, we added genuine animation to Logo (see Table X or Appendix

1.2 for a description of Logo's animation primitives). By typing

'SNAP', the student instructs the graphics system to save the effects of

all subsequent graphics commands as a display subroutine within the

IMLAC. 'ENDSNAP' terminates the subroutine. The result is a numbered

"snapshot" which can be shown anywhere on the IMLAC screen. 'SHOWSNAP'

shows such a snapshot at the turtle's current screen location. For the

purposes of erasing (with 'ZAP' or 'ZIP'), a snapshot is equivalent to

line segment. Rotation and scaling can be achieved by making several

snapshots of the same object in different orientations or sizes and then

showing them successively in a "movie". Thus, a simile recursive

47

Name

CLEAR

WIPE

SEE (HIDE)

Table IX

IMSSS Logo Turtle-Graphics Commands

Action

erase the text.area of the screen

erase any drawing and put turtle home

make the turtle appear (disappear)

PENDOWN (PENUP) enable turtle to draw visible (invisible) lines

PENP

POKE (UNPOKE)

HOME

FRONT (BACK)

LEFT (RIGHT)

SETHEADING

ASETX (ASETY)

ASETXY

RSETX (RSETY)

RS ETXY

THERE

HERE

ARC

return "TRUE" if turtle's pen is down, "FALSE" otherwise

stick out (pull in) turtle's head

move turtle to home position defined by SETTURTLE

move turtle forward (backward) a specific distance

rotate turtle left (right) specific number of degrees

point turtle on a specific angular heading

move turtle horizontally (vertically) to an absolute
screen position

move turtle horizontally and vertically to a position

move turtle horizontally (vertically) a relative amount

move turtle relative to its present screen position

equivalent to an ASETXY and a SETHEADING

return turtle's current position and angular heading

make turtle draw an arc of specified radius and sense

ZAP (ZIP) erase last turtle move(s) up to a visible line segment

PLOT (UNPLOT) (do not) direct turtle commands to robot or plotter

SETSCALE

SETTURTLE

WRAP

COMPRESS

set screen resolution in units-per-inch

set both scale and home position on screen

set up screen boundaries for wraparound

shorten IMLAC display list (precludes use of ZAP or ZIP)

48

Table X

IMSSS Logo Animation Commands

Name Action

SNAP wipe screen and begin creating a numbered "snapshot" of
whatever drawing (less erasures) is subsequently done

ENDSNAP finish defining current snapshot and wipe screen

ERASESNAP delete specified snap and its number

WHATSNAPS return a sentence of currently used snapshot numbers

SHOWSNAP display specified snapshot at turtle's screen position

PUTSNAP identify a snapshot with an old or new "object" at a
specific screen position, or move or erase an object

MOVESNAP move an object (with wraparound) a relative distance on
a relative heading and return object's final, absolute
position

WIPESNAPS wipe screen and erase all snapshots and objects

procedure for moving an object, referenced by a snapshot number, across

the screen might be:

TO WALK :SNAPNUMBER:

10 SHOWSNAP :SNAPNUMBER:
20 ZAP

30 FRONT 10
40 WALK :SNAPNUMBER:
END

(The reader might try to imagine the scene produced if line 20 were

omitted).

With respect to additions and deletions, the 'SNAP' /' SHOWSNAP'

scheme establishes a stack (last-in-first-out) ordering on the elements

of a scene. It proved adequate for many simple animation projects, but

49

it prevents placing a snapshot independently of the turtle and it

precludes erasing a particular snaphot without first erasing and then

restoring all picture elements that were drawn after that snapshot.

Given the nature of the IMSSS Tenex time-sharing system, this scheme

usually requires too much time to communicate, from Logo to IMLAC, all

the data needed for complex yet brisk animations (see also Section 5).

In order to manipt.late snapshot occurrences independently of their

displayed order, and to reduce intertommunication needs, we provided two

additional operations. 'PUTSNAP' creates an "object" which is a

snapshot placed at a particular "X,Y" location on the screen. For

example: 'PUTSNAP "5 1" "0 0" associates snapshot 5 with object 1 at

screen location 0,0. The relative location of this object now can be

changed with 'MOVESNAP'. The snapshot associated with an object simply

defines that object's current appearance, Thus, subsequent 'PUTSNAP'

commands can change either the appearance or the absolute location of an

object already on the sc.:.een.

A large saving in communiLation time resulted from this design;

complex animations became viable even in a normal time-sharing

environment. The 'WALK' program shown above could be rewritten as:

TO WALK :OBJECTNUMBER:
10 MOVESNAP :OBJECTNUMBER: "10 0"

20 WALK :OBJECTNUMBER:
END

Although the animati:n facilities were not used by students during

the summer experiment reported upon here, they were used in a later

experiment (Cannara, 1975" A number of students from the summer

50

experiment continued to work with Logo after school began, influencing

some aspects of the developing animation system. A two-minute, black-

and-white film about Logo/IMLAC graphics and animation is available from

*
IMSSS. Figure 10 is taken from that film.

Students used Logo animation to produce such things as a flyable

helicopter, a rocket launch, animated tic-tac-toe and a movie of

throbbing polygons. An example program appears in Appendix 1.2..

A Windmill Simulated with Logo/IMLAC(R) Animation

Fig. 10. Successive Frames from a Logo-Animation "Movie".

.1141....11Ma IMMI/1

* We are indebted to Pat Crawley of the Stanford Communications
Department for producing this film, and to Adam Grosser, Greg
Hinchliffe and Steve Spurlock for their imaginative programming.

51

2.2.3 Output Devices: Plotter, Turtle, Train and Audio

Twice, near the middle and end of the experiment, a Hewlett-Packard

model 7202A plotter was available to oux students. With this device,

students could produce permanent pictures on paper. This particular

plotter has a resolution of one part in ten-thousand and directly

accepts alphanumeric (ASCII) strings for line and point plotting, making

it an extraordinarily easy device to connect to existing systems. By

first typing 'PLOT' and an appropriate teletype number to Logo, a

student can execute almost any Logo-graphics commands with ink on paper.

Erasing and animation commands (e.g. 'ZAP') have no effect. Students

can use any type of terminal and still have their drawings appear on the

plotter. This can be used to encourage students to write and debug

storable procedures rather than to just draw by direct Logo commands.

A robot turtle, music box and their interface (all manufactured by

General Turtle Inc. of Cambridge, Mass.) also were available to our

students for several days at the end of the summer experiment, and

again, during winter and spring -- 1973-1974. Like the plotter, the

robot/music-box interface is straightforward to use because it

interprets ASCII characters as commands. These devices were not used

as much in the experiment reported upon here as in the subsequent one,

so further details on them are confined to Appendix 2.1.

During winter and spring, 1970-1971, a Marklin
(R)

, HO-gauge,

electric-train layout was constructed at IMSSS (see also Goldberg,

Levine and Weyer, 1974). It uses a special interface which decodes

characters, sent by PDP-10 programs, as commands for setting switches

52

and controlling the train's motion (see Appendix 2.2). The interface

also responds to queries about the presence of cars within a number of

distinct regions of track (blocks). When controlled by Logo, a Sail

program (Sailogo in Figure 9) interprets commands to the train,

remembers switch states and the train's block and direction, determines

legal moves, prevents potential derailments, monitors the train's

motion, and can find a path through any maze of possibly disabled

switches (or announce that no path exists). The latter ability was not

intended for students to use; students are suppoeed to write their own

maze-solving programs.

In 1971 and 1972, prior to our receipt of BBN Logo, a Basic-like

language and a small, traditional CAI curriculum were designed for and

used by students to solve mazes with the train on the fixed layout. A

schematic picture of the track layout is given in Figure 11. We use

"+" to separate blocks, which are designated by numeral-letter pairs.

Slashes ("1" or "\") cross other tracks at switches. Two "crossovers"

(nonswitches) also exist in the layout (at locations "5B" and "3E"). A

five minute color film, available from IMSSS, documents the project some

*
time before Logo was modified to control the train. The Logo/Train

interface is also detailed in Appendix 2.2. Train commands are

summarized there and in Table XI,

* We thank Steve Mylroie for his dedicated work on the hardware. The
film was produced by Mike Raugh with the help of Marney Beard and
Jonni Kanerva.

53

G FEDCBA
6 -----+--+--+--+--+--+-- 6

5 ! -+ -+ -+ -+ -+ -+ 5

/
\ /

4
I 4

! / / I

I / - !

3 1 --+--+--+--+--+--+-- + 3
!

_ / \
!

! / / \ !

2 -----+--+--+--+--+--+-- ! 2

/ \ !

/ \ !

1 -4- 1-4- -4- -4- -4- -4-

G FEDCBA

Fig. 11. Schematic of the Logo-Controlled Train Layout.

In retrospect, and for the benefit of those who would also be

interested in building this type of device, it is clear that precipitous

construction of a fixed layout, any layout, is likely to be a mistake.

We should first have graphically simulated the train domain, which in

fact can now be done with the Logo-animation discussed earlier. Then,

given the nature of the application, a hardware incarnation could have

been selected. The existence of a simulation would also have allowed

our work to continue, even when the hardware failed. Some of the value

of a concrete, physical device is of course lost in any simulation, but

the level of hardware reliability required of a real device is often

underestimated. A model train is a particularly challenging piece of

equipment in terms of reliability. Desirable abilities such as

54

Table XI

IMSSS Logo Train Commands

Name Action

FRONT move train forward a specific number of blocks

BACK move train backward.a specific number o5 blocks

HOME move train to its starting location (see SETTRAIN)

TRMOVE find a route and.move train to a specific location

SPEED set the train's speed

SETSWITCH set the direction of a specific switch

SETTRAIN set all switches straight, find train on track and put it
at a specific starting block

CONNECT join three specific blocks by throwing appropriate
switches

TRAINFO return information about the state of a specific block
or switch

WHERETO return a sentence of locations accessible from a
specific location

WHERE

TROP

WHISTLE

return a sentence of blocks under and to either side of
train, and the state of any relevant switches

general Sailogo operator for communication with Logo
(used for experimental commands)

blow the train's whistle

independent control of multiple trains make heavy demands on any system

for communicating between interface and rolling stock (engines and

cars). A piece of dirt on the track can wreak havoc with naive train-

monitoring schemes.

55

One reason why the IMSSS train has not been used extensively is its

lack of reliability. In addition, the fixed layout and control

facilities hamper the educational usefulness of the entire system.

Ideally, students should be able.to design their own layouts from a

basic matrix by defining allowable connections. Then, problems of a

gaph-theoretic nature could be posed.

Evaluation of our implementation led us to believe that a

generally suitable layout/simulation would have switches as nodes in a

graph whose links are track sections. The switches would not be

imbedded in blocks, as they are in.our present physical layout, and a

piece of rolling stock would not be allowed to stop on them. Nodes

would be the center of activities like uncoupling as well as switching.

In fact, a train simulation along these lines has been produced at

another research facility by one of the authors. Users of that system

can design their own cars, draw their own layouts and run as many trains

as they please. In terms of the relative value of simulation, it is

worth noting that the aforementioned simulation demanded an amount of

effort some orders of magnitude leas than that expended to build our

physical system at IMSSS, and it is eminently modifiable.

Another type of device, which allowed students to make the computer

"talk", was made accessible via Logo toward the end of the summer

experiment. It is the digitized-audio system developed for and used

by the Stanford reading project (Atkinson, Fletcher, Lindsay, Campbell

and Barr, 1973). Using the Logo primitive 'SAY', students could make

the computer utter sounds composed of any of 2000 prerecorded phrases,

56

words, and phonemes stored on a system disc unit. As for most of the

other devices we have discussed here, the audio system was accessed via

Sailogo. During the fall of 1973, only one terminal with audio output

was available to our students, on a limited basis. Nevertheless,

several students produced guessing games, word games, amusing parodies

of CAI like the Stanford reading program, narrations with deleted

expletives, and a truly amazing program that could dial a telephone (via

a special switchbox interface) and talk to whomever answered. In

reality we have only added the aural equivalent of 'PRINT' to Logo, but

when used in conjunction with graplics terminals, for example, students

can attack problems like the coordination of dialogue and picture in

movies. One student designed a talking turtle that narrates its

drawings. If work with the audio device were to continue, we would

like to give students the ability to record and access sounds that they

produce themselves. For the interested reader, an improved audio

recording and playback scheme is currently under development at IMSSS

(Benbasset and Sanders, 1973).

3 Student Selection, Grouping and Tutoring

Our desire to draw some conclusions about programming languages and

devices led us to design two linked sub-experiments (Table XII):

children using teletypewriters (Groups I, II and III) and children using

graphic displays (Groups IV and V). The fir3t three groups would

provide most of the data for comparing the languages, evaluating the

curricula and characterizing tutor-student-machine interactions. It

was hoped that comparing the behavior and performance of Groups I and IV

57

Table XII

Experimental Groups

Group Composition

I 8 students learning Logo and then Simper

II 8 students learning Simper and then Logo

III 8 students learning Logo and Simper at once

IV 5 students learning Logo with graphics

V 10 paired students learning Logo with graphics

would suggest what advantages or disadvantages graphics has for novice

programmers, while Groups IV and V might suggest how well students can

work in cooperative programming situations. The graphic capabilities

available to these groups were described in section 2.2.

Schools within bicycling distance of Stanford were contacted in

order to obtain inexperienced volunteer programmers, 10- to 15-years

old -- an age which is thought to ensure that children can master

*
abstractions (Piaget, 1970). Teachers and others recommending

students were asked not to base their selections on students'

performances in school, because we were interested in studying how any

child learns to program. We had observed previously that teachers tend

to recommend only their better mathematics students for such special

projects. Apart from an admonition against such preference, we could

* We are indebted to Carolyn Stauffer for her invaluable help as

liaison.

58

not control the way in which the invitation "to learn how to use a

computer" was presented to students, so we cannot be certain that our

enrollees constituted a ,:ross-,section of local students. More students

responded than were needed for the.groups outlined in Table XII. We

attempted to aczommodate them all, including friends who appeared later

during the body of the course. Figure 12 presents some information

supplied by the enrolling students in response to a brief questionnaire.

Since students typically heard about the course from their mathematics

teachers, the preferences they expressed weren't surprising. In all,

about fifty students involved themselves in the course at one time or

another. To some degree, this insulated the experiment from the

problem of dropouts.

One-hour :lasses were held in the mornings four days-a-week. In

theory, Fridays were reserved for modifying the curricula and debugging

the interpreters or devices. However, on demand of some of the more

interested students, Friday was considered open too. Since we could

provide na transpo:taticn, those students beyund bicycling range were

transported by their parents Parental inability to continue

transportation zreet*d a few defect:: dropouts.

In order to obtain an initial assessment of each student's aptitude

for programming, and paint out possible problems that each student

might later have in leazning the :oncepts, we constructed a test

consisting of questions gleaned from a wide range of sources.

Unfortunately, we found no test in current use which impressed us as

being valid fci.c the range of concepts in Table I. A number of

59

Ase/School Distribution /se/Liking of School

me

Pe
te 15

c hv la st 14 15

h 10- hv me lo 14 15 14

i hv hv wo 14 14 13

1 hv hv gu 14 13 13

d hv hv gu 14 14 13 12

r te hv hv ma 13 13 12 12

e 5- te hv hv ma 13 12 13 12 12

n hv hv hv ma 13 12 13 12 12

fr hv hv hv ma gu 11 12 13 12 12

tr hv hv hv ma gu 11 11 10 12 11

hv hv hv hv ma gu 11 10 10 12 11

0-
10 11 12 13 14 15 1 2 3 4 5

English

age

Languages

dislike

Age/S4hject Preferences

like

Science
15

14

14

Mathematics

15 15 14

15- 14 14 13

14 14 15 14 13

14 14 14 14 15 13

14 13 14 13 15 13 15 13

14 13 14 13 15 13 14 13

10- 13 13 14 13 14 13 14 13

13 13 14 13 14 13 13 14 12

12 15 12 14 12 15 15 14 13 12 14 12

12 14 12 14 14 12 14 13 14 13 12 13 12

12 14 12 13 13 12 14 12 14 13 12 12 13 13 12

5- 12 14 12 13 13 11 14 12 14 14 13 12 12 14 12 13 12

12 13 12 12 13 11 13 12 14 12 13 12 12 13 14 12 12 11

12 13 11 11 15 12 11 13 13 12 13 12 12 11 11 12 14 12 12 11

11 12 11 10 13 12 11 12 12 12 11 12 12 11 10 12 12 11 12 10

11 11 10 10 12 10 10 11 12 11 10 12 11 11 10 11 11 10 11 10

o-
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

dislike like

Fig. 12. Some Information Characterizing the Students.

60

E.;i3

commercial programming tests were examined and some questions from

these were used. However, all these tests relied heavily on timed

*
sections of multiple-chaice, often repetitious questions. Such

structuring praduces easily graded results and is commonly used to boost

the "reliability" (correlation among test applications) of a test. We

were inclined to place emphasis on the more elusive but crucial notion

of validity.

A test, no matter how reliable, is utterly useless if it fails to

measure the property of interest. It may even be dangerously

misleading. In terms of the theory of testing, as currently applied in

the social sciences (see Worthen and Sanders, 1973), validity like

reliability is measured by correlative techniques. However, no matter

how long the chain of correlations, validity is ultimately founded in

human judgements and evaluations. While we intend no critique of

testing theory and pra..:ti:t here, an example from one of the commercial

test brochures is discussed in Appendix 3.1, It should alert the

reader to some cf the pitfalls that threaten those who wish to do

aptitude testing, particularly with commercially available materials.

The onl) cmclusion we hope to imply with such an example is that

testing theory and practice typically diverge when validity is demanded,

and yet validity of measures is precisely what must be demanded wh,ft

meaningful research is the goal.

* Tests included: the ARCO Computer Programmer, the CPAB and Flanagan
Industrial Test series by SRA, the ECPI data-processing test, and the
IBM programming aptitude rest

61

We had two purposes for presenting our new students with a test.

First, a valid measure of a student's aptitude for learning the concepts

would be needed for matched grouping of the students now (as per Table

XII) and for a later study (Canners, 1975). Second, we hoped it would

be possible to match the way students attacked particular questions in

the test with particular aspects of their performance in the course.

Thus the test might be able to suggest the sort of tutorial help each

student would need. The test itself was a subject of research. It

was constructed of some questions taken from the commercial tests we

examined and questions of our own design. All questions were

formulated or reformulated to require constructive answers. A

definitive portion of the test is reproduced in Appendix 3.2. For our

purposes, multiple-choice items would be useless. We wanted to know

what students thought about each question and why they gave their

answers, even if the answers were wrong or incomplete. Detailed

answers would help us evaluate the test as well as the students.

Validation of the test, item by item, student by student, would be

immediately subjective with no extraneous correlations.

About one-hundred questions were selected for possible use in the

test. Before the questions were presented to the incoming students, we

attempted to evaluate their difficulty and clarity, and the time

required fox their solution. We presented the entire assemblage to

several programmers (childrei. and adults) in the IMSSS community. As

* We are grateful to Harney Beard, Doug Danforth, Adele Goldberg, Paul
Hechinger, Greg Hinchliffe and Lauri Kanerva for their help.

62

a result of this simple evaluation, we deeded to accept most of the

questions and present them in two tests. About one-third of the

questions were presented to students on the day they enrolled, and were

to be completed in one hour. The remainder were to be completed at

home at each student's convenience. The two parts of the test

contained many similar questions. This strategy was chosen because the

preliminary evaluation had suggested that time should not be a factor in

the test. Thorough and accurate evaluation of both test and students

seemed to demand tnat as many questions as possible be answered. The

two-part testing would also suggest whether or not any time limit should

be applied to the single test which would be used in the later study.

Unfortunately, many of the students failed to complete the lengthy

"take-home" portion of the test, either for lack of interest or because

they left the course. Therefore, most of what we will discuss about

the test will derive from results of the shorter, timed portion.

We had seleted questions aco,crding to their apparent value in

testing the ability tz manipulate unfamiliar languages, model or analyze

processes, fz.rm deductions, and visualize figural transformations.

Some of the questions proved to be very useful for discriminating among

the enrolling students. Two of these, the "candy-machine" and the

"numbers-in-boxes" problems, requited an understanding of concepts

directly related co programming. Eroxs made by the students on these

two questions were especially intatesting.

One of the questions presented a partial flow - diagram fox a candy

machine (the first problem in Appendix 3,2), A few states had been

6'3

left blank and connections between some states were musing. The task

was to complete the diagram in any reasonable way. Many students had

trouble with the basic idea that a process can be represented on paper

as a diagram of the sequence of events in the process. They left blank

states empty, filled them inappropriately, or misconnected the dangling

states. Errors in the solutions given could be divided into three

classes: (1) assignment of unreasonable destinations for unconnected

arrows, (2) assignment of unreasonable functions for undescribed states,

and (3) treatment of the entire diagram as a maze in which only one path

was to be marked as a likely protocol. Errors in class (1) or (2)

suggested that a student had trouble using the information already

present in the diagram to deduce reasonable "things to do next" or

"things to do now". Class (3) is interesting because such errors

indicated that a student viewed the diagram as instructions from which

to choose one plausible sequence,.rather than as a complete

description of all possible sequences, for some process.

The other question (given as the second problem in Appendix 3.2)

asked the students tc obey a short sequence of arithmetic instructions

which operated on some numbers in a set of numbered boxes. Very few

students correctly obeyed the instruction which read: "Add the number

in box 7 to the number found in the box whose box number is in box 6,

and write the sum in box 6". The sentence is hard to read, but the

idea that a number (value) in a box could be used as the number (name)

of a box (indirect addressing) was the typical difficulty. Many

students also had trouble with the idea that writing a new number into a

box should destroy its previous contents. Solutions fell into a few

64

distinct classes which can be attributed to failures in the

understanding of those two concepts.

In a later section, we will discuss the relationship between

students' solutions to test questions and their performance in the

course. Our desire for constructive answers to all questions is best

justified by those examples of "wrong" answers which nonetheless showed

that students were thinking along the right lines. Figure 13 presents

some answers for a question derived from a commercial programming

aptitude test (note the subtle defects in drawings B and C, and the

beguiling A-B sequence). It is important to note that answers like

those in the figure evidence approaches to the questions which would

have been counted completely right or wrong if nonconstructive answers

(e.g. multiple-choice) had been required. Figura 14 shows examples of

totally unexpected answers to a question of our own formulation. One

can neither assess a student fairly, know what a test is testing

(and therefore cannot begin to establish validity) if the scheme for

generating answers critically warps or limits any information relevant

to the purpose test.

Results of the teat were used to establish a rank ordering of the

enrolling students and then to assign them to experimental Groups I, II

and III. Performance on the test seemed to break into a few levels,

and roughly equal numbers of students from each level were assigned to

the first three gro is. Groups IV and V were formed according to

student preferences on working alone or with a partner, so that no one

would be farted into an uncomfortable situation. Grcupings I, II and

65

The Question and the Desired Answer

Figure A was changed into Figure B by a simple rule. Please

draw figure D so that it corresponds to figure C changed by the

same rule.

What is the rule in words? BOTTOM SHRINKS, TOP GROWS

Other Answers

41i3

TURN IT UPSIDE DOWN AND ALTERNATE SIZE

A IS A SQUARE WITH A CIRCLE, B IS JUST THE OPPOSITE

YOU CHANGE TO THE OPPOSITES

TAKE THE FIRST BASIC FIGURE AND CHANGE
WITH THE SMALLER AND TURN UPSIDE DOWN

)3s

THE SMALL TOP FIGURE BECOMES LARGE AND THE
OTHER BECOMES SMALL AND THEY TRADE PLACES

Fig. 13. Some "Wrong" Answers from the Preliminary Test.

The Question and the Desired Answer

What one rule, not using arithmetic, was used to make the
digits on the right from the strings of digits on the left?

999999999 9

556 5

6106 6

TAKE THE FIRST DIGIT

Alternate, Unforeseen Answers

PREDOMINANT NUMBER

WHAT EVER NUMBER THERE IS MOST ON THE LEFT, PUT IT ON THE RIGHT

TAKE THE DIGIT WITH THE HIGHEST PLACE VALUE,
OR THE ONE THAT REPEATS MOST OFTEN

Note: "number" was acceptable although "digit" or "numeral"
were technizally correct. More than half of the students who
gave complete answers to this problem seemed not to be aware of
the distinction. Their rank and choices of words contrasted
as:

student rank

above median

below median

"digit"
or "number"

"numeral"

9 8

3 8

Fig. 14. Some Novel Answers from the Preliminary Test.

67

III were logical rather than physical because the students determined

their own class schedule within the time constraints mentioned earlier.

Scheduling of Groups IV and V was constrained to specific times because

of the limited availability of graphics terminals.

Figure 15 shows the composition of the groups according to testing

rank, age and amount of time spent in actual work with the interpreters.

Notice from the table that the median tends to divide younger (10-12)

from older (13-15) students. The candy-machine and the "logic" (the

third problem in Appendix 3.2) problems tended to be most influential in

discriminating among students of equal age above and below the median.

The youngest had the most trouble with the candy machine. They missed

the point that the diagram was an overall description of the machine.

A few of the older students were familiar with flow-charts from school

and thought that problem easy. They were also students who arrived

after the course had begun. Late arrivals usually did very well with

the test, perhaps in part because they could work on it quietly alone --

a feature lacking in our massed testing of the first enrollees.

Examining the test results in terms of four constituents, the first

three problems in Appendix 3.2 and everything else, we can compare the

students' performances generally as follows. Students at the bottom

of the ranking were unable to grasp the candy-machine and the box-

program questions, they correctly analyzed only the clearest statements

in the logic problem, and they failed to finish the test by a large

amount. Students near the middle filled only the empty states in the

candy machine reasonably; they correctly obeyed all commands but the

68

/10

Group Age Hours Spent Using Logo & Simper

III *$ 15 36.4
1$ 15 35.7

IV 12 23.3
++ V 13 23.3
+ II *$ 15 18,1

+ IV 13 52.6
+ 111$ 13 29.7
+ III* 13 11.1

+ I *$ 12 12.7

+ II *$ 13 59.2
+ III# 14 0

+ I# 14 5.8
+ II 13 50.6
++ V* 13 33.4

II 14 33.5

II 12 22.8
IV 11 22.7
IV# 14 15.6 Legend
IV 13 19.0

II# 14 6.4 * marks students who enrolled
II*# 14 27.9 after the course had begun.
I# 14 5.7
If 14 5.7 + joins graphics partners.

median.. II# 14 0

I 11 24.2 . marks significant breaks in
10 14 4.9 performance on the test.
III 11 14.2

I 12 23,0 # marks those who dropped the
I 14 18.0 course early.
III*# 13 2-1

III 12 11.0 $ marks students who continued
12 4.7 programming well after the++++ V#

10 6.9 course had ended.V#
+ + III 13 28.7
+ + 1$ 12 27.1

12 18.511111111 V

+ + + +I- V# 11 2.6
+ + + + 1* 10 11.7

+ + + -1-1- WI '12 13.5

+ + +44+ V# 12 0.9
+ + II .. 12 21.1

+ + III 12 20.1

+ + 1 12 19.1

12 9.4+ IIIIII V#
+ 111$ 10 35.7
+ 1V$ 11 41.8

11 25.0MIMI V
II 13 6.1

Fig. 15. Student Ranking on the Preliminary Test.

69

the indirect-addressing command in the box program, with some failures

to erase a box's content when they wrote into it; they only missed the

fourth statement in the logic problem; and they did faitiy-well on the

rest of the test, though not always finishing it. Students near the

top correctly filled all states and connected all the dangling arrows in

the candy machine, a few of them missed the indirect-addressing command

in the box program, they did the logic problem correctly, and they

typically finished the rest of the test. Of course this breakdown is

not rigid. In particular, it is very hard to order many of the tests

in the broad middle region of the ranking. Ranking forces transitivIcy

upon performance ratings for solutions and problems which are often

qualitatively different. But, however difficult our work was made by

demanding constructive answers, the answers contained maximal

information about the students and the test. If the test had been an

exercise in multiple-choice, it is not clear what it would have told us,

but it certainly would have told us less. Suggested changes in the

test will be discussed later, as part of the experimental results.

We planned that the experiment depend upon written curricula which

would control the basic information given to students. Interpreters

for the programming languages would simply act as computational

resources which the students could use to work problems in the curricula

or experiment with on their own. However, we felt it was impossible to

develop a fully self-contained curriculum for programming. In

addition, our main concerns were gaining access to tutorial protocols

generated by novice programmers while trying to give the students the

best possible environment for learning. Therefore, we decided to

70

provide human tutors who could help students over failures in the

curricula and report to us on their interactions. The tutors were to

be knowledgeable in the programming languages being taught and would be

familiar with the corresponding curricula. We hoped to have enough

tutors available each day to guarantee at least one for each five

students in each group. We emphasized two instructions to the

tutors: (1) never type anything for the student on his or her own

terminal, even when giving the most direct help, all typing must be the

student's; and (2) when asked for help on any problem, encourage the

student to formulate and try out his or her own ideas first, before

making other suggestions. We hoped these instructions would guarantee

the purity of the protocol data and help the students to think as much

about generating and debugging ideas as about getting correct results.

An evaluation of the tutoring effort will be included in our discussion

of results.

4 Curricula

Development of "parallel" curricula for Simper and Logo proved to

be the mast demanding task in setting up the experiment. Both the

concepts and the languages had to be taught, and this is done best with

example problems, some of whose solutions students must copy, modify or

generate. We felt our ability to teach both the concepts and the

languages would be very sensitive to our choice of problems. And, fnr

* Out thanks go to Avron Barr, Harney Beard, Doug Danforth, Adele
Goldberg, David Rogosa and John Shoch for their help as tutors

71

our students, we hoped that the course would serve to improve their

literacy on the subject of computers and computation. Again our choice

of examples and projects would be important.

Unfortunately, documentation of problems used in similar work by

others was scarce or cursory. Furthermore, most of the relevant

research had been based on Logo or an equivalent high-level language.

Problems appropriate for a low-level language such as Simper are

typically quite different. That was the fundamental obstacle to

achieving apparent parallelism, given the intentionally diverse natures

of the languages to be taught. So, the curricula were constructed to

teach the concepts in roughly the same order, using whatever features

each language possessed that could best be exploited for each concept.

As well as the concepts, the mechanical details of each language

had to be taught. A few features (line-editing) of Simper and Logo are

very similar and were taught at the same time in the same way. But

most features were taught differently, either because they were

appropriate to different concepts or because they were needed at

different times as tools in the general structure of each language.

Appendices 4 and 5 supply glimpses of the Logo and Simper curricula as

they were during the experiment. The Appendices and the discussion in

this section do not reflect the.changes to Logo, Simper and the

curricula which resul&ed from th. :Ixperiment.

Each curriculum was divided into logical parts (10 for Logo, 13 for

Simper), each typically discussing more than one concept (Table XIII).

Typically, these parts gave students programs to work on and fill-in-

72

' 0

Table XIII

Discussions of the Concepts in the Curricula

Concept Logo Part Simper Part

13

machine command language

alterable memory

literal

names and values

evaluation, substitution

stored program execution

decisions

procedures

procedure arguments

functions

composition

partial/total functions

context

changing context

recursion, iteration

1,

2,

3

4

4,

5

8

5

6,

6

6,

7

4,

7

5,

2

4,

5

7

7

6

7,

5

8

1,

2,

3

3,

3,

3,

5,

8,

7,

7,

7

7

5,

11

4,

2

3,

8

5

4

12

11

11

8

11

9,

8

11, 12,

the-blanks questions to answer. The parts were distributed one at a

time, giving the tutors a chance to review each student's work on them.

Those students learning Simper and Logo simultaneously (group III, Table

XII) alternately received parts for each language. The concepts were

presented roughly in the order of Table I. The loncept of a heuristic

was introduced via a scheme for thinking about recursive algorithms

(Polya, 1957). This involved a brief case analysis of some problems:

73

v.

(a) what case can be computed? (b) how do I detect that case? (c) if not

that case, then how do I generate one closer to it? (d) what must I

remember for each case? and (e) when do I stop? In procedural terms,

(a) and (b) form the procedure body, (c) 13 the recursive step, (d)

preserves local context, and (e) is the stopping rule.

A special effort was made to produce visually pleasing curricula.

Path pointers gave direction to the student, making the next question or

instruction contingent upon the student's latest response. This subtly

introduced decision making and sequencing (program control). Cartoons

and examples were chosen for humorous as well as conceptual merit, and

frequent summaries were included so that the curricula could endure as

reference material. Outlines of both curricula follow. Occasionally,

it may be helpful to refer back to Sections 2.1 and 2.2 for details

concerning the languages and ddvices.

Part 1 of the Logo and Simper curricula were identical and began

with an informal discussion of Church's thesis and how it relates the

potentials of human thought and machine computation. Some interesting

capabilities of computers were illustrated. Part 2 used line-editing

to illustrate that a machine can possess a memory that is alterable via

commands in a simple, definitely nonhuman language. The substance of

this part differed between the languages only to the extent that Logo

has more line-editing commands (see Table V). Students were 'ncouraged

to type anything they desired, in order to test the very primitive error

handling of the interpreters, The incompetence of many of the

responses so generated was exploited to help students understand why

74

r

present machines do not comprehend human languages (because humans do

not yet understand how language is comprehended), and to tie this to

Church's thesis and thinking in general.

From part 3 onward, the techniques for introducing concepts with

Simper and Logo diverged. In the next subsections, we will discuss the

remainder of the Logo curriculum, then that of Simper, and finally some

differences between the two curricula.

4.1 Logo

Part 3 described Logo's literals (numerals and quotcd strings) and

the simple commands: 'PRINT' and 'TIME'. Turtle graphics students

(groups IV and V) also tried simple graphics commands like: 'FRONT',

'LEFT' and 'PENDOWN'. This introduced Logo's left-to-right sequence of

evaluation, as well as commands that return values. Part 4 dealt with

name/value pairs, assigning to and finding values of names using either

'MAKE' and 'THING OF', or the colon notation (e.g. ':NAME:'). It ended

with a short play which illustrated, via dialog, how a command composed

of several operations and inputs is evaluated by Logo.

Part 5 directed students to copy and alter a procedure, 'RECTANGLE'

(which drew (printed, on Teletypes
(R)

) a picture of a rectangle and

which students enjoyed modifying to draw a variety of other pictures,

some censorable). The part presented an example procedure,

'TWORECTANGLES', that called on 'RECTANGLE' twice. Students in the

graphics groups studied the same examples and solved many of the same

string-o,iented problems as the other students, but they also worked on

75

procedures for drawing pictures. This exercised many of the concepts.

We did not develop a truly separate graphics curriculum because the

turtle domain does not provide many novel (in terms of the concepts)

uses either for recursive procedures that return values or for

conditionals -- beyond stopping rules for recursive drawings. Flow of

procedure control was introduced in this part, as was simple recursion

(the 'RECTANGLE' procedure calling itself).

Part 6 presented procedures with inputs and an output, the use of

the 'TRACE' command for debugging, and analogies between procedures and

functions with respect to composition and inverses -- for example, the

two procedures:

TO DOUBLE :NUMBER: and TO UNDOUBLE :NUMBER:

10 OUTPUT SUM :NUMBER: :NUMBER: 10 OUTPUT QUOTIENT :NUMBER: 2

END END

which are nearly mutual inverses. Because 'UNDOUBLE' cannot handle odd

numbers, it was cited as an example of a partial function on the

integers. At this point, students had been exposed to sufficiently

many concepts ta be able to create significantly complex programs and

make interestiag (to us) errors.

Part 7 treated procedures which dealt with Logo's basic data-

structure: strings. The following procedure was one correct solution

to a problem derived from the preliminary test:

TO SWITCH13 :TEXT:
10 OUTPUT WORD THIRD :TEXT: WORD SECOND :TEXT:

WORD FIRST :TEXT: BUTFIRST BUTFIRST BUTFIRST :TEXT:

76
C.

-- it flips the first and third letters of an input word (procedures

'SECOND' and 'THIRD' had already been written as exercises). The

solution served as an example of a function that is its own inverse.

At the end of part 7, recursive procedure calls were presented as

sequences of "little brothers" (Feurzeig et al., 1969; Brown and

Rubinstein, 1973) with "knowledge clouds" describing their local

environments. Students who were not helped by this were asked to

consider a chain telephone call as an alternate analogy.

Part 8 dealt with decision making and the use of predicates,

particularly in stopping rules for recursive procedures. It posed

the following model of recursion:

TO CHOMP :WORD: CHOMP "TAR"
10 TEST EMPTYP :WORD: TAR
20 IFTRUE STOP AR
30 PRINT :WORD:

40 CHOMP BUTFIRST :WORD:
50 PRINT :LIORD: AR
END TAR

This model was chosen because it is not a "last-line" recursion (i.e.

the recursive call on line 40 is followed by an affective command rather

than by a stop) and requires the student to do some thinking about the

state of the formal parameter (i.e. the value associated with "WORD" for

each recursive call). The last parts of the Logo curriculum

concentrated on problems to solve and projects to work on which required

application of all the concepts. The nature and extent of difficulty

students had with such projects could be used to judge the effectiveness

of the Logo curriculum itself.

4.2 Simper

Part 3 of the Simper curriculum introduced the literals of the

Simper language: decimal numerals. Names and values in machine

language terms were also introduced. The part discussed the concept

that a stored list of values is a program when it is executed by a

machine for which those values have meaning. Part 4 motivated the

sequential execution of instructions. Editing of memory locations

illustrated another approach to the concept of alterable memory.

Program control was introduced by a program which subverted (by writing

into the program counter: register "P") the normal execution sequence.

The program ran indefinitely.

That program was exploited further to illustrate the fact that the

same algorithm often can be realized in more than one way. For

example:

001 :PUT A 73
002 :PUT P 2
003 :HALT

and 001 :PUT A 73
002 :SUBTRACT P 3
003 :1

are computationally equivalent. The students enjoyed programs which

ran on and on. A debugging feature in Simper allowed them to display

registers and instructions as their programs were executed.

Part 5 attempted to clarify the three-level structure of Simper by

contrasting the syntax and semantics of interpreter commands, assembler

instructions and machine instructions. This would be a good place to

treat the notion of computational context, since many students had

trouble understanding that differing languages had to be used for

78

communicating with the separate levels of Simper's structure. The part

also introduced the decision-making operation: 'JUMP', and the notion

of a program bug. The 'JUMP' operation offered a good test of a

student's ability to predict what a given program would do. Students

were encouraged to debug by pretending to be the Simper machine (see

Berry, 1964). For particularly confused students, an egg-carton model

cf. Simper's memory and registers proved helpful.

Part 6 classified Simper's assembly language instructions with

respect to format and use. Special operations, such as 'ROTATE', were

treated in detail, and new interpreter commands were introduced. The

part acted primarily as a reference manual for operations and ASCII

character codes. Part 7 reviewed the three essential characteristics

of a computer (sufficient instruction set, accessible memory,

controllable execution). The concept of a function was introduced

using the character input/output instructions (i.e. 'CASK', 'CWRITE')

which transform keyboard characters to /from decimal codes. This

simultaneously introduced a new literal, the keyboard character, and the

idea of computational context. Students seemed to have a lot of

trouble grasping the latter.

The concept of functional composition and inverse followed

naturally with a program which used the "B" register to link Simper

operations which are mutual inverses:

001 :CASK B
002 :CWRITE B

Concepts of symmetry and domain could be introduced here because the

79

above program cannot be executed backwards -- 'CWRITE' does not produce

an output which is accessible to 'CASK'.

Students next worked on a program which realized a more complicated

function (i.e.: X + X + 9), which was derived from the preliminary

aptitude test. Partial functions were introduced using the 'ASK'

operation, which accepts only numerals from the keyboard. The concept

of a data structure was also provided by the character input/output

operations, and by testing for arithmetic overflow or truncation. The

latter could be exploited to illustrate non-determinism.

Part 8 introduced symbolic addresses (names) for memory locations.

It pointed out that a name can be chosen to reflect the content of a

location, making it easier to remember the name/value pair (but one

student insisted that numerals were easier to recall). Students were

asked to find an alternate realization for the function of the previous

part (e.g.: 2X + 9) using names and, upon success, to synthesize a

program that realized some function of their own choosing. Part 9

introduced relative addressing and data defined by a program which

rotated five character codes into a single memory word. An inverse

program rotated the codes back out, typing them on the terminal.

Students enjoyed using these programs together to read in and print out

some short words; and mime, who were also Logo users, felt a new

appreciation for Logo's facility with strings. This type of program

offered many interesting debugging opportunities.

Part 10 dealt with indirect addressing, demonstrating again that

the meaning of data depends on how and by whom it is used. A program

80

which destroyed itself by decrementing an address used for storing was

exploited to prove that the instructions understood by the underlying

machine are simply numerals (the program could read its own instruction

codes from the student, write them over itself, and keep on running).

Indirect addressing was also used in a program that read a substitution

code from the terminal and then translated "secret" messages. This

helped to clarify what addresses are, it showed that programs and data

are often segregated, and it introduced the "array" data-structure.

Part 11 formally introduced procedures and their calling sequences.

Part 12 introduced stopping rules in au iterative procedure for typing

dashed lines of any length. Part 13 merge- ,.he major programs in parts

9 and 12 into two linked procedures in order to define a new data

structure: strings (the procedure was called "TYPE" in direct analogy

to Logo's equivalent command). Students could load character codes

into memory and print them out, thus making such things as posters

possible, albeit tedious. Students were then asked to synthesize a

procedure which created, anywhere in memory, a string typed from the

keyboard. The final Simper part dealt with an implementation of

recursive procedures using a pushdown stack to preserve local context.

In the actual experiment, very few students reached this point.

4.3 Contrasts

The curricula (and the tutoring) were intended to teach computer

literacy, especially in the sense that the computer is a very general

tool for solving problems and that numerical processing has little to do

81

with the principles of computation. The Logo and Simper curricula

were, at least for this experiment, experimental. Ultimately,

parallelism was sacrificed in favor of presenting the concepts via

widely ranging applications of various features of the respective

languages. Furthermore, pieces of the curricula were often synthesized

"on the fly" if we found that what we had already written was not

succeeding with the students.

Part 3 of both the Logo and Simper curricula opened by discussing

the concept of a literal (numerals in Simper, quoted strings or numerals

in Logo), but soon diverged. Simper students were taught that a

machine's memory can be modifiable and observable, and that a set of

values entered into it can be obeyed as instructions (a stored program).

They necessarily were introduced to the Simper computer's structure of

registers and memory. Bits of assembly and machine language were

introduced along with a few interpreter commands (e.g. 'LIST'). Logo

students, however, were not exposed to stored programming until Part 5.

Here, they composed direct commands from simple operations (e.g. 'WORD')

and literals, thus learning about Logo's string-oriented processing and

learning that operations can pass messages among themselves. The

concept of machine memory was treated only in terms of line-editing.

Logo Part 4 introduced name/value associations (via 'MAKE'), noise

words, and a fill-in-the-blanks play which reviewed Logo's evaluation of

a command composed of the few operations known so far to the students.

Use of a value as a name (indirect.addressing) was also introduced.

For Simper, this was not discussed until Part 10, although name/value

82

associations had been treated in Part 3. Simper Part 4 continued with

the basics of programs, attempting to motivate the default order of

execution (successor) and the ability to override it (by modifying the

"P" register's content).

Simper Part 5 opened by attempting to clarify the tasks handled by

Simper's three agents: the interpreter, the assembler and the machine.

The students were asked to classify phrases in each of the corresponding

languages, In spite of the slightly different interactions which are

appropriate to command mode versus editing mode, this type of thing was

not done for Logo. The Simper part also introduced decision-making in

program control (using 'JUMP') and the idea of a "bug" (an unforseen

error) which, in this case, caused a program to run forever.

For Logo, most decision-making was delayed until Part 8 and bugs

were discussed first in Part 6. Logo Part 5 introduced procedures as

both stored programs and new commands. Program control (in the sense

of sequential procedure calls), program structure and simple recursion

were motivated by drawing (or printing) multiple rectangles. The part

ended with a rather complicated procedure that casually introduced

decision-making co evaluate responses to a riddle. A short manual of

commands and abbreviations, and a discussion of Logo's program-saving

facilities were also included. Saving programs in files was now

important to Logo students because they could write procedures that

produced desirable results (pictures, etc.). Simper students would be

introduced to program saving much later, when they could synthesize the

relatively more complicated machine-language programs needed to produce

comparable results.

Logo Part 6 began by discussing bugs and debugging and led into

functions, inverses and composition. 'TRACE' was introduced as a

way of spying on a procedure's true .activity. Corresponding use of

'RUN' and the "ENTER" key had been made in Simper Part 3. Students

were asked to synthesize and debug their own functions. Functions were

not similarly treated in Simper until Part 7. Simper Part 6 began with

a brief manual of machine operations and the ASCII character codes for

future reference. It attempted to clarify the structure of assembly

language for exceptional operations like 'SHIFT'. This led naturally

into non-numerical processing of data. In contrast, Logo students

began with such processing and did the most with numbers later, in Part

6. The part ended with a brief test of the students' understanding of

Simper's tripartite structure, which had been observed to be

particularly confusing to students.

Simper Part 7 reviewed Church's thesis in terms of the properties

that a machine must possess if it is to be a computer. The Simper

machine's characteristics were mapped onto this framework. Functions

and related concepts were treated using character processing and the

same visual analogies applied in Logo Part 6. Now Simper students were

asked to synthesize their own functions. By making an inconsequential

change to one function, they also saw that a function may be realized

by more than one algorithm. The part ended by demonstrating the effect

of finite word-length on the storage and processing of data (i.e., the

effects of truncation and overflow on numerical data). Logo Part 7

paralleled the Simper discussion of computers. It then diverged and

attempted to motivate the use of inputs to procedures by introducing new

84

Logo commands (e.g, 'BUTFIRST') and by suggesting several string-

processing functions for students to write (e.g. 'SWITCH13'). A few

"block and arrow" diagrams (flowcharts) were included to check the

students' mastery of Logo's command evaluation and procedure execution.

This type of aid was not used much in Simper. Logo Part 7 also

suggested that a problem's solution could be structured by writing and

then combining procedures which solve parts of the overall problem.

This occurred much later in Simper (Part 11). The Logo part ended by

discussing recursion again, using the "little-brothers" analogy, with

and without inputs. The students were asked to synthesize a few

recursive procedures, which proved to be a difficult task.

Logo Part 8 introduced de.i_sion making via the use of predicates

and execution selectors (e,g 'TEST' and 'IFTRUE'). 'PIGLATIN' and

'BINAR' (binary Game of Life) were exemplary applications. The use of

deesion-making in stopping rules for recursive procedures was also

covered (eg. 'CHOMP'). Simple, analogous applics-ions of 'JUMP' had

been made in Simper Part 5, but stopping rules only became important in

the final Simper parts. Simper Part 8 introduced assembler symbols

(names) for the purpose of making programs more readable. It also

asked students to write more examples of functions and showed how bugs

may appear even when applying simple arithmetic operations (e.g.

division by zero). The latter was analogous to the treatment of

'DOUBLE' and 'UNDOUBLE' in Logo Part 6.

Simper Part 9 was concerned with further details of assembly-

language addressing, It also introduced novel data-structures (e.g.

85

19-digit numerals as 5-letter words) by applying simple manipulations

(e.g. 'ROTATE' and 'LOR')_ Strange data - representation schemes were

not discussed in Logc, Logo Part 9 continued to provide examples of

recursive, string-manipulating procedures. 'MEMBERP' provided an

example of how built-in data-structures could be exploited to represent

special kinds of information, in this case sentences or words were

viewed as sets. Along the same lines, students learned how to write

procedures that could make letters print themselves as posters (using

'DO'); this was a response to obiious desires of most students. A

similar concession was made in Simper Part 11.

Logo Part 10 consisted of many problems that could be solved by

writing one or two recursive procedures. Students were encouraged to

apply previously written procedures as tools (e.g. to use 'REVERSE' in

writing a palindrome tesr-r). A Morse-code problem analogous to one

done in the same Simper part, and a graphics command interpreter for the

turtle, extended the idea that the meaning of a message is ultimately

aeiined by the recipients Simper Part 10 introduced indirect

addressing along with a potentially self-destructive program to carry

the same point Log: students knew just enough at this time to face

the rather hard problems of Part 10. The Logo curriculum ter.ainated

here to allow students time to work on the part and on problems of their

own choosing, Afterwards, interested Logo students could learn Simper.

The remaining Simper parts (11 through 13) attempted to motivate

the use of procedures in machine-code programs, and to show how the

equivalent of :ecursive Logo procedures with stopping rules could be

realized in Simper. Hopefully from this, students would gain some

appreciation for the inner structure of Logo and other high-level

languages. Then Simper students could start learning Logo. The Logo

curriculum did not discuss the structure of Logo itself.

5 Data Acquisition and Analysis

First, we will outline the simple methods we chose for obtaining

data, given the experimental setup already described. Second, we will

mention some features of the IMSSS time-sharing system which have had a

negative influence on data acquisition or other aspects of this

experiment. And third we will discuss the type of analysis we feel is

appropriate for our essentially qualitative study and why that analysis

cannot be founded naively upon classical statistical inference.

Throughout the experiment, the Simper and Logo interpreters saved

information on each student's activities. Each command or response

typed by a student was appended to his or her individual protocol file

on the operating system's disc storage. Prompts -1d error messages

elicited from the interpreters, and output from students' programs were

also saved as they happened. Each such piece of information was tagged

with its time of occurrence. From these files we intended to

reconstruct each student's interaction with the languages and devices

he or she used. At the end of the experiment, we modified the Logo and

Simper interpreters to accept these files directly, in place of keyboard

input. Each student's interactions with the interpreters could thus be

replayed and be observed in their proper context. In addition, the

87

error-message and timing data in the protocol files could be analyzed in

more conventional ways by forming summary statistics such as error

frequencies and typing delays (response latencies). This sort of data

was not of particular interest to us except insofar as it could be used

to point out particularly common errors, or confusions due to

imperfections in the curricula or the tutoring. Some additional data

were obtained from notes made by the tutors during the course of the

experiment. However, as we will discuss later, the tutors were usually

overburdened and were able to supply only a few corments on their

interactions with the students. So, the bulk of the data from which

results can be reported derives from replaying the automatically

recorded protocols and recording our own work as tutors.

System Effects. Each day during the experiment, about forty

students used the Logo and Simper interpreters. At any instant of

time, between ten and fifteen students would be working. Ultimately,

their interaction with the interpreters and our ability to obtain data

were controlled by the operating system implemented on the IMSSS PDP-10.

At this writing, that system is Tenex 1.31; during the experiment, it

was Tenex 1.28, an earlier version. The Tenex system was developed at

Bolt, Beranek & Newman Inc. of Boston under a U.S. Department of Defense

ARPA contract to provide "virtual" memory management and other features

to owners of PDP-10 machines. It, is historically related to the SDS-

940 time-sharing system. Certain aspects of the Tenex system, in

either version, are at once elegant and troublesome. Some others are

either misleadingly implemented, or logically consequent to the

philosophy of the system's design yet implemented partially or not at

88

all. We Will discuss some examples. Only a few had detectable impact

on the experiment. Our purpose is documentary -- for others who may

use the same sort of system for similar purposes. The least

significant system difficulties appear first.

(1) A few Logo and Simper operations (i.e. 'WAIT' and ' WAITM') have

misleadingly inaccurate effect due to the nature of Tenex's program-

scheduling algorithm, For example, the Logo command: "WAITM 60" may

produce an execution delay ranging from sixty milliseconds to several

seconds, depending upon the short-term system load. Unlike operating

systems typically supplied by the PDP-10's manufacturer, Tenex does not

advantageously reschedule programs which have dismissed their execution.

Thus, from a program's point of view, a dismissal interval can be

specified only by a nondeterministic lower bound.

(2) Also pertinent to scheduling, and relevant only to our design

of the Logo/Sailogo system for operating various devices, are delays

imposed by inter-"fork" communication. Tenex forks are pseudo-

parallel, superior/inferior program contexts which may be set up as

parts of one user's job, Each job is allowed a maximum slice of

processor time whenever it is ready to run. Thus Logo and Sailogo

communicate and run sequentially, but as one job. One might therefore

expect that any time remaining in a Logo job's .J.me-slice, after Logo

has sent a message to Sailogo, would be available to Sailogo to carry on

the computation. This is not so, because Tenex considers such fork

communication as an input-output wait and reschedules the Sailogo fork.

The same is true for 7.ommuni:ation in the reverse direction. Depending

89

upon the instantaneous system load, such "invisible" rescheduling can

cause abnormally long delays even in simple Logo/Sailogo interactions.

In our experiment, this effect was most seriously felt when students

were doing turtle-graphics drawing and animating. For instance, after

the experiment, when Simper was modified to contain, in the same fork,

the graphics portion of Sailogo easily possible because both Simper and

Sailogo are Sail programs), Simper produced turtle dra,/ings roughly

twice as quickly as did Logo.

(3) Another problem arose when we attempted to simulate the control

of one device by more than one student. The real train could only

operate one engine and respond to only one controlling program, so we

attempted to create a situation in which at least two students could

interact with a single, multiple-train layout in a cooperative problem-

solving situation. The most straightforward design should be the

linking of two Logo jobs to the same simulation by reading from and

writing into one another's memory space. One of the allegedly elegant

features of Tenex is that every information handling entity in the

system mimics the behavior cf a file (even terminals are viewed as

readable/writable files). However, one user's job cannot access

another's fast-memory space, although jobs can share and communicate

(more slowly) via disc-storage files. Thus forced to design a one-job,

multi-fork simulation (one Logo fork per user, with the main simulation

controlled by a superior fork), we found that Tenex would not allow

multiple primary terminals for one job. The pseudo-interrupt system

required by Logo (eg. to allow "control -G" to function) could not be

enabled for more than one student user. Success might be achieved by

90

someone more familiar with the bowels of Tenex, but we and the system-

maintenance staff at IMSSS failed, Therefore, we could not make the

multiple-train simulation part of our experiment.

(4) The nature of Tenex's disc-file management influenced our

ability to save individual protocols. Given the number of students

enrolled in our course, we had to maintain at least one-hundred distinct

files for immediate access by Logo and somewhat more for Simper.

Typically, half of these were protocols, the remainder student programs.

Unfortunately, Tenex 1.28 provided for a maximum of about 120 files per

directory -- when a directory is full no new files can he created until

some are expunged. In such a circumstance, no new protocols and no new

student programs could be saved, We considered saving all protocols on

one file; this would greatly reduce the chances of saturating a Tenex

directory. The idea was to append data continuously, in what is termed

"thawed access", This simply means that more than one user may write

or read the same file, However, thawed access proved useless because

only data for the last student tc close such a file would indeed be

saved, To oar knowledge, this potentially useful feature has yet to be

correctly implemented in any version of Tenex. The present version

(1.31) at IM3S6 eases the directory saturation problem because it almost

doubles the allowed directory space. However, a more elegant solution,

based upon the dynami: directory allocation schemes of earlier PDP-10

systems, wuld offer permanent relief. A related difficulty stems from

the lack of full "device-independent IO" in Tenex. One cannot randomly

pick two system devices (e,g. a DEGTAPE
(R)

and a standard magnetic tape)

and send data uniformly from one to the other, Only some connections

91

can be made without recourse to special programs, This only influenced

our weekly saving or student data, for which a special program was used

to create directories and write files onto standard magnetic tapes.

Again, this is an example of an effort which would have been unnecessary

had Tenex's designers incorporated certain important abilities of

earlier PDP-10 operating systems,

(5) Our final comments pertain as much to what the IMSSS time-

sharing system must do, and should be, as to what Tenex is. The nature

of a "demand-paging" system such as Tenex is to break all programs (and

files) into uniform "pages" (blocks) of information. Since today's

computer technology pLts a premium price on fast memory, most systems,

including that at IMSSS, have insufficient resources to allow all

active programs to reside in fast memory. Thus a paging system uses

not-so-fast, inexpensive backup-storage to expand a machine's apparent

memory space. Each user has virtually the machine's entire memory to

work wich, bat is subjected tc transfer delays and rescheduling whenever

his or her program demands access to pages not in fast memory.

Theoretically, this a:lcws diverse uses of the machine in an efficient,

time-sharing mode (see Denning, 19701. However, at IMSSS, the bulk of

daytime ccmputation has been in shared (reentrant) programs. For

example, students using Logo share large blocks of the interpreter.

Only data pertinent to each student varies. Yet, in busy periods when

many users demand memory, a paging system like Tenex swaps onto backup

storage even the frequently used shared pages of student programs. The

fact that even the smallest, one-page programs undergo such blind

shuttling accounted for some of the poor performance of Tenex when it

92

was first implemented at IMSSS and.was confronted with loads, typical of

CAI, generated by scores of students all running in a few, small

programs. For our experiment .even more so for traditional CAI), it

would have been useful to have been able to "lock" small, reentrant

programs into fast memory, thus :educing the paging load while .surping

a relatively small fraction of available memory. Such an option is not

conveniently available in Tenex (it is under belated study at IMSSS).

It should certainly be considered by anyone intending to use analogous

paging systems for simple educational programming loads in which fast

response to interactions is paramount. As did the train, Tenex became

a "fait accompli" at IMSSS without a deep concern for, or a thorough

preliminary analysis of, its real-life behavior.

These 7omments have concerned aberrations in the IMSSS time-sharing

system which might influence the service students receive as they work.

Hardware problems, mainly stemming from parity errors in the relatively

unreliable memory in use (to this date) at IMSSS, also affect its users.

No system can always recover from such errors and often must be

reloaded, destror:ng all users' programming contexts, Some data were

lost in this way, and, more seriously, many students lost their

programs, twenty or so minutes of their sessions and their rhythm with

the curricula. Other problems, which do not generally affect student

activities, will not be mentioned here, In general, only (2), (4) and

the memory errors mentioned above presented daily nuisances to our

experiment,

93

Analysis. The stated purpose of this experiment turns upon our

ability to understand our students as they have tried to learn Logo,

Simper and the concepts explained in the curricula. We are not

concerned with classical hypothesis testing, although others have

attempted to reduce their analyses of children learning programming to

clinical forms, e.g.

"Children who have had a Logo experience for several
semesters will perform significantly better on problem
solving tasks than children who have been in a non-LOGO

control environment.

Scores on a test for recursion in daily communication by
children who have had a LOGO experience for several
semesters will be related to their ability to use recursion
in LOGO programming." (Folk et al, 1973)

Our goal has been the exposure of basic features of how children

think in the relatively unconstrained environment of a programming

laboratory. That is a qualitative exercise, and it centers on a

detailed study of errors made by students as they try out new ideas for

themselves. But, an analysis of errors must be valid in the sense that

the essence of their pr.:co..al is not warped by analytical constraints.

Whenever statistical pr3:edures (such as classical hypothesis testing)

are applied to data, certain mathematical assumptions (of scale and

distribution) about that data must be met. In too many educational

settings, the importance of these assumptions is ignored. Yet

arbitrary assumptions lead to technically invalid or misleading

analyses. We will discuss some common statistical pitfalls in more

detail after we demonstrate how we have analyzed errors recorded in

students' protocols.

94

An example taken from Simper protocol data illustrates the nature

of our analysis. The example shows how one student suddenly seemed to

grasp a concept with which he had been having trouble -- name-value

association (addressing) in Simper. If the programming is unclear, the

reader should refer back to Section 2.1, keeping in mind that a modified

Simper is described there. The student's dialog with Simper is

reproduced here as he was engaged in writing a program to realize the

function: x
2

- 3 :

003 :2

015 :ASK A
016 :STORE A 200
017 :MULTIPLY A A
018 :SUBTRACT A 3
019 :WRITE A
020 :RUN 15/

He appears to understand the purpose of addressing in 'STORE A 200', but

his program contains several errors that suggest otherwise. The first

causes execution to stop at 017 because the symbol "A", used in the

address field of the instruction in 017, has no binding and thus no

associated value. The student thought he could square the A register's

content with the instruction: 'MULTIPLY A A', and he thought he could

subtract 3 trom that with: 'SUBTRACT A 3'0 In both cases, the meaning

of the register field seems to be understood, but the address field is

misunderstood. The student :erects the first error (messages from the

interpreter are in lower-case):

020 :FIX 17
017 :MULTIPLY 200 200
200 isn't a register, use a, b, or p
017 :MULTIPLY A 200
020 :RUN

95

and the program works except that, because location 3 contains the value

2, the subtraction doesn't do what he expected. At this point he seems

to understand that he can store and access values via addresses (names)

because of his correct use of the register and address fields of the

'STORE' and 'SUBTRACT' instructions. But the idea crystallizes:

020 :FIX 201

201 :3

when he associates the desired value 3 with the name (location) 201,

020 :FIX 18
018 :SUBTRACT A 201

and correctly accesses it to complete his program. From this dialog, one

can see the student begin to apply the concept in correct fashion (in the

'STORE' instruction), then fail because he has not yet mastered it fully,

and finally succeed, partly helped by simple error diagnostics. The

student later made a similar mistake, but corrected it at once.

For the purposes of the experiment, this type of analysis can

suggest when and how a student masters something presented in the

curricula. Students can be compared in far greater detail than can be

achieved with discrete tests, the curricula and languages may be

evaluated very finely, and the preliminary aptitude test's validity may

be rated subjectively.

Protocol analysis also allows us to evaluate the languages by

showing us how they help or confuse novice programmers. The following

are brief examples from Logo and Simper protocols of absurd or

96

misleading responses to syntactic errors. First, consider:

_PRINT :::SNOOPY:::
don't use the empty thing for a name

in which the student's obvious attempt at multiple indirect-addressing

is completely misconstrued by Logo's simplistic parsing (the first pair

of colons are found to contain no name string). And second:

001 :SUBTRACT 1 FROM P
002 :RUN
warning! you forgot to name a location fromp
illegal memory reference 0 at 1

in which Simper, striving to extract three fields and no more from the

student's line, compressed a simple syntactic error and generated a more

advanced type of error. Not only was this spurious error unrelated to

what the student had done, it exposed the student to a situation for

which he was not yet prepared (i.e. the use of assembler symbols).

Examples like those can be used to guide language design. Since

the experiment discussed in this report was in part a pilot study for a

later experiment, our protocol studies led to changes in Logo and Simper

in preparation for that experiment.

It should be clear that the interpreters we have used are not

"smart ". They do not tutor their users on the semantics of programs --

in the experiment, that was left to humans. The interpreters do little

more than trap syntactic errors, sometimes acceptably well:

97

001 :SHIFT
unspecified register, use a-, b, or p
001 :SHIFT 76
76 isn't a register, use a, b, or p
001 :SHIFT A
shift uses 1, or r or @ and a number in the address field
001 :SHIFT @56
@56 isn't a register, use a, b, or p
001 :SHIFT L 56
1 isn't a register, use a, b, or p
001 :SHIFT A L57

As we mentioned earlier, a simple analysis of the protocol files

was also carried out (e.g. Figure 16) to provide us with a few summary

statistics which might point to difficult areas of the curricula or

give us a very coarse measure of student performance. For example, if

a Simper student's errors were categorized and plotted as in the graph

in Figure 16, an interesting effect usually could be observed:

familiarization with the language led to a decrease in errors classed as

syntactic and an increase in those classed as semantic. We infer that

as students increase their active programming vocabulary, they can

more easily realize their ideas about problems as programs and find that

their ideas (now programs) aren't always debugged. This is more

reasonably corroborated by tutorial data and detailed protocol analysis.

We now return to our general discussion of the care which must be,

yet often is not, exercised in applying classical statistical techniques

to the analysis of data like those generated by our experiment.

"It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts." (Sherlock Holmes, by

Sir Arthur Conan Doyle)

98

:LC 6

bi11163.dta;3 AUGUST 1, 1973 12:20PM

1 DAYS, 1 LOGINS, 33.40 MINUTES ON, 372 KEYS TYPED ON 60 LINES.

RESPONSE DELAY, MEAN & DEVIATION: 32.15 34.36 SEC.

1..00 LOGINS/DAY, 33.40 MINUTES/DAY, 372.00 KEYS/DAY

33.40 MINUTES/LOGIN, 372.00 KEYS/LOGIN, 60.00 LINES/LOGIN

11.14 KEYS/MINUTE, 6.20 KEYS/LINE, 1.80 LINES/MINUTE

36 ERRORS: 36 GENERAL, 0 NAME, 0 RUN, 0 FIXUPS

36 SYNTAX ERRORS, .60 SYNTAX ERRORS/LINE, 1.08 SYNTAX ERRORS/MINUTE

.00 RUN ERRORS/LINE, .00 RUN ERRORS/MINUTE

0 10 20 30 40 50 60

.I I I I I

1 ###################
2 ##########
3 ##

446

5 #
6 #

7 #

8 #

1

2

3

4

5

6

7

8

UNSPECIFIED REGISTER, USE A, B, OR P
EMPTY ADDRESS FIELD?
SHIFT & ROTATE USE L, R OR @ & A NUMBER IN THE ADDRESS FIELD
EXCHANGE USES A REGISTER IN THE ADDRESS FIELD
ONLY VALUES FROM 0 TO 999 MAY BE PUT

ISN'T A REGISTER, USE A, B, OR P
SHIFTS OR ROTATES MUST BE BETWEEN -999 & +999
UNKNOWN OPERATION

0.2+

Errors per
Command Line 0.1 +

/ syntactic

semantic

0

0 1 2 3 4 5 6

Weeks in Course

Fig 16, A Simple Quantitative Analysis of Protocols.

99

Conan Doyle and his Holmes were not statisticians, but the quoted

remark is nevertheless apt. In the social sciences, especially in

education, the style Df research too often reflects a Quixotic quest for

numerical results, apparently stemming from the belief that

quantitativeness is a precursor of objectivity and respectability in

one's discipline.

"They use statistics as a drunkard uses lampposts,
for support rather than illumination." (Andrew Lang)

(the reader is welcome to replace "statistics" with "references" or

"quotations"). This is amplified by the relatively easy access most

researchers now have to computerized statistical procedures (Ellis,

1972). Perhaps more seriously, widespread use of standardized

procedures has led to stereotyped theorizing (e.g. to hypothesis testing

restricted to linear models and Normal distribution theory -- procedure

defines theory), while the implicit assumptions of the procedures are

virtually ignored,

Consider, or example, cur preliminary test (Section 3) for

"programming aptitude", whatever that may be. We could score the

results of students' work on it on some scale, say 0 to 100, to get a

list of numbers that :ould, perhaps along with other numerical data, be

injected into a vast number of standard statistical programs. We could

compute correlation and regression :oeffizients, and test hypotheses.

But, the relevant statistical procedures have been derived from a set of

first principles and assumptions. What about them? Mustn't all the

restrictions they imply be met reasonably well by our data and the

100

scoring process' Are the theories defined by these procedures relevant

to the kinds of questions we wish to ask about, and will they shed light

upon, the real-life process that produced the data?

Take for instance the word "scale", used in describing how we might

produce "scores" for our students. Many (educational) researchers

believe that tests define scales. But a scale of measurement is a

well-defined mathematical object. It is an abstraction of a particular

property of other objects. Every device (test) that purports to

generate a scale must, apart from truly measuring some property, produce

results which do not violate the principles which define a scale. For

instance, to be represented on an interval scale (as points on the

number line), data must have (among others) the property of transitivity

of point and interval. In other words, any data points a, b and c

obeying, for instance, the relation: a > b > c must also obey: a > c;

similarly, any intervals p-q, r-s and t-u obeying: p-q > r-s > t-u must

also obey: p-q > t-u; and so on, for other relations. Valid test

scores cannot be taken as interval-scale data unless all scores which

differ by equa: imerical amounts imply equal differences in amount of

the property measured by the test. So, a test must be uniformly valid.

Consider the much-maligned "IQ" (standardized intelligence) test.

Students who score between 50 and 60 must differ respectively and by

exactly as much in whatever the test measures as do those who score

between 120 and 130, and so on, for all possible differential scores,

otherwise the score data are at most of ordinal significance.

Unfortunately, such data are often reported as interval data. This can

be, for at least three reasons, misleading or plainly wrong.

101

First, students who score low on a test do so because they know how

to answer few questions, while students who score high may answer the

low-scorers' questions and others as well. Different questions

(answered by different students) alledgedly test different abilities,

intentionally so. Tests are often divided into subtests which reflect

'..he theoretically diverse abilities to be tested. But combining scores

from all questions on a test into one descriptor may negate the

assumption that equal score intervals are commensurate. Unless all

questions or subtests can be shown to be disjoint and distinct in the

same way for every student who takes the test, reporting one summary

statistic per student and presenting a distribution is folly. An inch

at the low end of a yardstick measures as well and means the same thing

as an inch at the high end. Can the same be paid for IQ or many other

mental tests? Saying that such tests "measure what they measure"

skirts fundamental mathematical issues of data representation. They

are not analogues of yardsticks.

Second, a measuring instrument which interacts with the individuals

it measures may not produce even ordinal data. Consider the cultural

bias which various tests are said to impose upon the testee -- an

allegation that has recently been sustained in some courts. Tests

which ask humans to think will observe human thinking, subject to the

vagaries of human psychology. How useful is a yardstick that is highly

and ambiguously sensitive to heat, light and the day of the week?

Third and last, even if a test validly represents its results as

interval data, those data are often "standardized" by transformation

102

into a convenient distributional form, often the Gaussian (Normal),

which may have nothing whatever to do with the population process that

gave rise to the data. Such preprocessing ("transgeneration") is

common to many computerized statistical procedures, and can be

legitimate. But, for instance, IQ data is manipulated by hook or crook

to fit a Gaussian form. Obviously, at most ordinality is preserved,

and the resulting "bell-curve" is totally without redeeming scientific

importance. Forcibly molding data to fit analytical constraints can

destroy the meaning of both the data and the analysis. Of what use is

a "silly-putty" yardstick, perhaps grading from meters to fathoms to

feet, if the questions we ask of its measurements cannot properly

account for its latest non-linear form?

Apparently, we do not understand the psychology of testing (or

learning) well enough to fairly represent mental-test results as more

than ordinal data But analyses derived from distribution theory, like

regression, correlation, and analysis of variance and covariance, assume

that the data they operate upon is at least interval-scale data. And

such procedures are applied daily to mental-test scores. What can be

inferred from such misapplications? Mathematically and scientifically,

nothing. Blind use cf statistical procedures can only give a false

sense of objectivity. One does not have a scientific result when one

applies an analytical technique in violation of any assumptions on which

that technique was derived, unless one also has a theory which describes

the perturbations induced by each and every violation ("robustness" and

the "law of large numbers" don't so qualify). One seems to have

results, because procedures can't judge the source and calibre of their

103

numerical input -- cube roots of license-plate numerals observed in

travelling cross-country will feed most procedures, but what do they

measure? Any act of measurement, physical or social, must be done in

the light of a theory of how the measurement interacts with the

measured. Not a trivial theory (e.g, of signal-plus-Gaussian-noise as

in classical test theory), but a theory that defines the signal (and

scale axioms) in relation to other objects, Yardsticks and radar can

abstract the same property of objects, but it is the same property

because the theories of the two devices mesh. Statistics enters only

as a "theory of errors", when we wish to judge "noisy" measurements in

some organized way; the noise is ancillary to, yet affects not the

theory of, the signal, But variations in human behavior (e.g. as

"measured" in educational testing) are not always noise to be described

away by statistical conveniences like analysis of variance. Likely as

not they are data whose meaning might point to reasonable educational

theories that have eluded simplistic analyses, or, sampling from Rene

Haynes' postscript for Koestler (1973):

"This matter of quality as contrasted with measurement ...
seems to me to emerge with ever-increasing urgency. It

cannot be ignored simply because it is so uncomfortable a.id

so difficult to deal with. It is relevant to science ...
Yet (because it is sc much easier to accumulate and to
quantify data than to reflect on their significance)
quality and meaning, which matter most to men, tend to be
brushed aside "

Research that applies "damn-the-torpedoes" quantitativeness produces no

results, because the link between the data and the analysis has been

broken, for instance, by vacuous scaling, Yet there might have been

results. Many valid analyses can be carried out on a body of data

104

=7

.4...hos

without the need for cavalier assumptions about its structure (e.g. see

Bradley, 1968 or Puri, 1970). The analysis should fit the data, not

the other way around, to paraphrase Sherlock Holmes.

Misuse of scales is only one criticism that can be levied against

free-wheeling statistics. Here, we will not discuss others, which

range from data-"improvement" techniques like "Windsorizing" to

confusions of deduction and induction. Let us return to the example of

our own test.

The preliminary aptitude test's results were presented as a rank-

ordering of our students (Figure 15) obtained by a "forced-choice"

evaluation of their work, Perhaps even this is not justifiable, for a

test whose validity has yet to be determined by experimental results.

At least a few students, especially near the median, might well be

reordered OT c:nsidered hopelessly tied. Yet rank-ordering enforces

transitivity. The theory behind our test is simple and qualitative:

take as questiAls examples of the thinking that programmers are

typically asked to do, where some types of thinking are more important,

in the ptagramming sense, than others, The former relates to validity,

the latter to t:ansici,rtty. No part of the theory suggests cardination

or interval scaling- We feel that a careful, subjective evaluation of

constructive answers produced by students can more nearly approximate an

objecti%e technique (if one exists) for ranking them than can a falsely

objective testing/scoring procedure. Our theory may be wrong or

incomplete, but determining that is one purpose of the experiment: what

do students' interactions with the zest hale to do with their

105

interactions with the course and with programming? Again, theory is

eternally subject to data. The test's initial validity teeters on our

subjective choice of questions, and it will stand or fall depending upon

experimental results. Surprisingly many mental tests go unevaluated by

their users who nonetheless report results of their use (e.g. see Folk

et al. 1973 -- although we have been critical of their application of

statistics, their report is otherwise valuable).

Why is misuse of statistical procedures common, perhaps growing?

Apparently because many believe that social/psychological research can

only be substantive if it mimics the quantitativeness of the physical

sciences. Ultimately, dispelling this rationale is the responsibility

of statistics teachers (especially those who teach, or are,

nonstatisticians), who must instill not only broader knowledge, but a

sense of responsibility and respect for the use of statistical inference

*
in decision making and theory building.

6 Results

Virtually every component of the experiment was evaluated in some

way. The students provided feedback both directly and indirectly, by

supplying specific opinions to us and by our observations of their

behavior and attitudes. Figure 17 summarizes the students' responses

to a questionaire they received from us shortly after the experiment

had terminated. The total numbers of opinions for all rows are not

* We are indebted to Mario Zanotti for sharing with us his knowledge of

the foundations of mathematics and statistical inference,

106

Tone of Student Remarks

Subject Negative Noncommittal Positive

Plotter 1 16

Graphics Turtle 2 26

Games 3 25

Tutors 2 3 25

Return again 2 3 25

Train 3 14

Robot Turtle 1 1 9

Logo 8 21

Logo Lessons 3 8 18

Simper Lessons 5 5

Simper 3 3 5

Teletypes
(R)

4 12 11

Subjects are ranked on relative fraction of positive remarks.

Fig. 17. Student Preferences.

identical because some students responded partially and others were not

sufficiently exposed to every item to render an opinion.

Most of the preferences expressed in Figure 17 correlate with

casual comments made by the students during the experiment. For

instance, the plotter was preferred to the robot because "it draws

better" (it produces more faithful drawings). The plotter was

preferred to the IMLAC
(R)

graphics because it produces portable,

107

permanent results, and because one can "see it work" -- this fascination

might have worn off had we had the plotter longer. Graphics was

preferred to the robot because it was faster, more accurate, and

personally available for each student. Animation could not influence

these opinions because it was not available until the very end of the

experiment.

The item listed as "games" in Figure 17 refers to certain programs

accessible to students on the IMSSS system, such as Hangman, which were

intentionally not announced until the students completed most of the

curricula. Some students, of course, accidentally discovered a game or

two. Our policy was that games could be used after a student's daily

session with Logo or Simper. The most popular games were: highly

interactive, like Hangman; those involving more than one player, like

Poker; and those with plenty of action, like Spacewar. Wordy, random-

number-driven games, like Football, were thought "dumb"; unless they

tickled a specific interest, as Startrek often seems to do. Games were

ranked to give us an idea of their place in the students' view of the

experiment. We encouraged students to write their own games and used

some as examples in the curricula.

One prevalent opinion among students familiar with both Logo and

Simper was that "it's harder to do things in Simper". This resulted in

most students preferring to work with Logo, regardless of the starting

language. Figure 18 tabulates the proportion of time students spent

using Logo (and, by complementation, spent using Simper) for all non-

graphics students. Note that, within each group, students are ordered

108

.;

(Logo hours / Simper + Logo hours, versus pretest rank,
"-" denotes students who took the test but not the course)

Group I

.99

1.0

1.0

XXXXXXXx

1.0

1.0

.98

1.0

1.0

1.0

1.0

.99

Group II

.70 XX

.34

.48

.22

.31

0.0

.17 XXXXXXXXx

xxxxxmcaxxxxxxxx
xxxxxxxxxxxxxmcmxam
xxxxxxxxxxx
moopoocxx=cxxxx

0.0
.04 XX

0.0

Group III

.82

.69

.64

.87

.67 XXXX

.69

.68

.68

.88 XXXMCXXXIOGUOUOCXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

XMX)CXXXXXXXXXXXXXXXXXXXXIOCXXXXXXXx

XXXXXXXXXXXXXXX

XXXx

laXXXXXXXXXXXXX=XXXXXXXXXXXXXXXXx

XX)C<XXX

XXXXIQOCCOCXXXXIOCXXXXXXXXXXXXXXXXXX

Fig. 18. Breakdown of Students' Programming Time.

109

by pretest rank. Thus Figure 18 may be correlated with Figure 15 to

obtain further information. This convention will be observed in other

figures in this section, whenever it is appropriate.

Because few students finished (reached the last part of) the Logo

curriculum, Group I spent negligible time with Simper. But many Group

II students went far enough with Simper to be able to start Logo, partly

motivated by their seeing their friends' work. What is interesting

about Group II's behavior is that the students who began using Logo

stayed with it, virtually to the exclusion of further work with Simper.

Figure 18 also shows that students given simultaneous access to Simper

and Logo (Group III), and subject only to the stricture that Simper and

Logo curricula parts alternated, chose to spend most of their time with

Logo. This group answered a capability question: students can learn

both languages, nearly simultaneously, and do so faster than students

who learn the same languages sequentially.

Mass preference of Logo co Simper was, in our view, a desirable

outcome in terms of the students' computer literacy. Although Simper

provides a convenient way c.) learn and experiment with assembly/machine

language programming, students could see the advantage of a high-level

language. Logo offers what students seem to want: easy access to

message and picture processing. It offers a computationally more

important feature: ease of phrasing complicated control structures.

However, we found that appreciation of this latter idea was usually

confined to the more able students.

110

Before further discussing the students' behavior, let us consider

gross aspects of what the experiment suggested concerning the validity

of the preliminary test. For Group II, Figure 18 indicates a

correlation between students' ranks on the pretest and the time they

needed to complete the bulk of the Simper curriculum. Because of the

general desire to use Logo and our inability to distinguish (from

summary protocol analysis) personally-motivated use from curriculum-

motivated use, the data for the other groups do not relate to pretest

rank. Students were also ranked by us and the tutors according to

programming ability and dedication to the tasks presented to them in the

curricula. Figure 19 shows these ratings, again by pretest rank, for

all Simper students.

Figure 19 also tabulates the mean rate of errors in each student's

commands throughout his or her work with Simper. Some slight, joint

trend of error rate and pretest rank seems evident. For example, the

median rate (.11) for those above median rank is much lower than the

median rate (.26) for those below median rank. The reader can easily

find other indicators of asymmetry in this sample of data that suggest a

positive correlation between rank and error rate. However, we must

caution that averaging errors in this way blurs the nature and

importance of individual errors. Without referring to detailed

protocol analysis, such a correlation merits little more than a "that's

nice". We should mention that typing and reading ability varied

greatly among the students. Furthermore, some students forged along,

not caring how many errors they made, while others worried inordinately

about making mistakes, particularly observed ones. Various

111

GILTTILL and III (Simper data)

("-" denotes students who worked less than 3 hours)

Errors per Command

Rankings Based Upon Subjective
Evaluation of Performance

Mastery Perseverance

.06 XXX 1 3

.14 MCCCKXX 3 2

.11 XXXXXx 3 3

.26)0{XXXXXXXXECX 4 3

.03 Xx 2 1

- - -

.07 XXXx 3 2

.07 XXXx 2 1

.16 XXXXXXXX 4 1

.34 XXXXXXXXIDCXXXXXXX 5 4

.23 XXXXXXXXXXXx 4 4

- - -

.26 XXXXXXXXXXXXX 5 4

.50 XXXXXXIXXXXXXXXMLICOCCXX 5 5

- - -

.26 XXXXMOODOOCC 4 4

.15 XXXXXXXx 6 5

.13 =COCK 6 2

.16 XXXXXXXX 5 4

.34 XXXXXXXXXXXXXXXXX 5 4

.27
I. 1

6 3

Fig. 19, Simper Students' Performance Versus Pretest Rank.

combinations of suai abilities and attitudes obviously can confuse

simple comparisons of error rates. It happens that the fourth-ranked

student (Figure 19, with a high error-rate) fell into the "unbridled

typist" category; the third and fourth from the bottom (with low error-

rates) were extremely careful, tending to work out commands on paper

before typing them; and the fifth from the bottom had a penchant for

typing random numerals, which never appeared as errors because Simper

was perfectly happy to store them away. Apparently anomalous error-

112

rates can have explanations that can improve the apparent correlation of

pretest rank and error rate.

Examining the "mastery" and "perseverance" columns of Figure 19, we

also see some mutual trends with pretest rank. High rankers,

especially in mastery, tend to be above the median; low rankers below.

Figure 20 shows similar results for Logo students. Note, however, the

lack of obvious mutual trend between error rate and rank in Figure 20.

Protocols provide the following explanations. In Groups I and

III: the unbridled typist returns with a friend as the fourth- and

fifth-ranked students; careful planners are bottom and third from the

bottom; the random-numeral typer is now caught by Logo, generating a

higher rate, sixth from the bottom; and a new phenomencn: picture-

printers, fifth, tenth and eleventh from the bottom, who discovered how

'PRINT' commands could be employed in procedures that "drew" their

favorite things (like the "Starship Enterprise"). The latter three

students made relatively fewer errors because they stagnated at this

point in the curriculum. We did not intend to coerce any student to

continued the curriculum, rather, we adopted a wait-and-see attitude,

hoping they would eventually notice that other things, being done by

other students, could also be interesting. This tack failed with one

of these three students.

In Groups IV and V: paired students tended to make fewer errors

because commands often were agreed upon by both partners before being

typing, but pairs typically consisted of students low in the pretest

ranking. One paired student, fifth from the bottom, had a partner who

113

("-" denotes students who worked less than 3 hours)

Rankings Based Upon Subjective
Evaluation of Performance

Errors per Command Mastery Perseverance

Groups I and III (Logo data)

.16 XXXXXXXX 1 1

.13 XXXXXXx 2 1

.28 XXXXXXXXXXXXXX 2 1

.33 XXXXXXXXXX,Varax 3 2

.32 XXXXXXXXXXXXXXXX 2

.35)COUCCOODUOUCCOOMx 4 5

.22 XXXXXXXXXXX 5 5

.26 MCLICOCCUXXX 6 5

.21 XXXXXXXXXXx 2 1

.16 XXXXXXXX 4 4

.15 XXXXXXXx 5 3

.24 XXXIIECCOMMK 4 2

.26 XXXXXXXXXXXXX 2 1

.26 XXXXXXXXXXXXX 6 4

.19 XXXXXXXXXx 3 2

.28 XXXXXXXXXXXXXX 5 4

.17 XXXXXXXXx 5 3

.29 XXXXXXXXXXXXXXx 3 2

.15 XXXXXXXx 4 2

Groups IV and V

.16 XXXXXXXX 1 1

.22 XXXXXXXXXXX 1 2

.18 XXXXXXXXX 1 1

.20 XXXXXXXXXX 1 2

.13 XXXXXXx 1 1

.21 XXXXXXXXXXx 3 3

.16 XXXXXXXX 3 4

.29 XXXXXXXXXXXXXXx 4 3

.23 XXXXXXXXXXXx 3 4

.18 XXXXXXXXX 2 2

.09 Max 2 3

.20 XXXXXXXXXX 4 4

.16 XXXXXXXX 3 3

.16 XXXXXXXX 2 2

Fig. 20. Logo Students' Performance Versus Pretest Rank.

114

dropped out early in the experiment. She was extremely secretive about

her work, which focussed upon drawing many different styles of castles

via direct Logo commands -- an analogue of the 'PRINT' hang-up above.

In general, students experimented more with Logo than they did with

Simper, apparently because they felt more able to express their ideas in

Logo. This partially explains why the median error-rate for

nongraphics, Logo students (.24) is higher than that for Simper students

(.16).

If we consider our ratings of students, students' error-rates, and

time needed to complete a curriculum as valid indicators of programming

competence, then we can say that the preliminary test seems tc be a

usefully valid means for ranking programming neophytes.

6.1 Understanding the Students

This section relates most directly to our central interest: how do

students learn programming and what can observations of that learning

process tell us about student/tutor interactions in general. Our

discussions stem primarily from protocol analysis. We consider first

Simper then Logo.

Simper. We begin with the initial, untempered ideas about

computers that our students brought to the course:

HELLO WHAT'S NEW?

DO YOU LIKE SUMMER?

THIS TYPEWRITER IS TOO SLOW

115

DO YOU WANT TO PLAY JOTTO?

I AM FUNNY

SOME DOGS ARE WHITE

WHAT IS 12X12? HOW DO YOU WORK?

TEACH ME HOW TO DO A PROGRAM HOW DO YOU KNOW?

THERE ARE TWO MILLION FLYS IN AMERICA

DEAR JUDY, THIS COMPUTER CLASS IS A LOT OF FUN.
EVERY ONCE IN A WHILE THE COMPUTER GOES WACKEY!

Of course, we had encouraged the students to plumb Simper's 'Iliad", and

all the above efforts received no more than "unknown operation xxx" in

reply. But a few students fortuitously struck upon operations as in:

001 :COMPUTERS ARE FUNNY
'are' isn't a register, use a, b, or p
001 :COMMAND YOU
'you' isn't a register, use a, b, or p

where 'COM' is short for the 'COMPARE' operation. This piqued their

curiosity; some explored this new level of interaction ad-nauseam, but

they remembered Simper's abbreviation-by-truncation for later

exploitation.

Our naive programmers often had a very high opinion of

computational technology. It was easy to show them that English is not

yet a mode of communication between human and machine, but it took some

time for the implications of this to penetrate.

At times, students' attempts at communication were tied to

curriculum ideas:

REMARK LITERALLY PUT A BUG IN A

SIMPER COMMANDS ARE FAMILIAR TO COMPUTERS LIKE SIMPER

WILL YOU WRITE ME SOME SIMPER PLEASE

116

001 :3 4 10 ARE RELATIVE TO THE NUMBERS 15, 17, 29.
IN WHAT WAY THOUGH?

unknown operation 3

001 :3 (THREE) IS A NUMBER AND ALL COMPUTERS LIKE YOU
SHOULD KNOW WHAT IT MEANS!

Sometimes they became confused about the curriculum instructions

for typing commands. The following shows some examples along with the

motivating curriculum excerpt:

LINEFEED ... all you do is type LINEFEED and ...

1 TYPING 1 ... and then typing 1 and ENTER ...

GO TO THE SUPERMARKET (see Appendix 5, curriculum page 17S)
BUY EGGS AND BACON

FIX PUT P 2 TO P 1 RUN ... use FIX to change ... from PUT P 2
to PUT P 1 and then use RUN and ...

In fact, some students typed Simper's prompt because it had been shown

at the beginning of a line they were asked to type:

001 :001: ADD A 12
unknown operation 001:

One student tried to get a program to run by simulating Simper's runtime

message:

007 :EXECUTING 1 TO 250
unknown operation executing

producing an enjoyably idiotic response. Another student, in his

frustration, uncovered a bug; not in Simper, but in the Sail compiler's

string run-time-routines:

005 :,YOU STUPID COMPUTER
'stupid' isn't a register use a, b, or p

117

The bug disguised the "," and thus the proper error: "unknown operation

,you".

Other confusions arose when students worked with both Logo and

Simper (as did Group III). Logo commands cropped up in Simper

protocols and vice-versa. In these cases, however, the first or second

error message usually was sufficient to remind the student of which

interpreter was listening to his or her typing. In a few cases,

students thought they could resort to Logo commands when their Simper

programs failed to produce results. By far the most common

interjection of Logo was in saving programs. Apparently, learning the

more complicated Logo scheme of "entries" in "files" overrode some

students' knowledge of Simper's simpler filing method.

At the very least, most students initially thought that a computer

could help them on a personal basis. We agree; that should, and

perhaps will, someday be the case. Several discovered the '?' (or

'HELP') command which printed a general description of the Simper

language. While this was never intended to be a necessary part of the

course, it nonetheless was exercised frequently by a few students.

Curiousity and an open desire for aid were attitudes we had hoped to

exploit and certainly not to diminish. Students' were willing to

experiment in :?,yilgto use Simper as an information resource to help

them work out ideas from the curriculum. Unfortunately, some of their

attempts were stymied by our sometimes misleading verbiage or notation.

Since work with numbers was so much a part of our students' prior

schooling, it was relatively easy for them to accept that a machine

(Simper) could have a good memory for numerals. But understanding that

some numerals had a special meaning, other than for counting, to a

machine was a more difficult concept. This was partly a problem

because of the premature introduction of assembly language, thus working

downward from English rather than upward from machine language.

Perhaps the correct sequence would also have reduced the incidence of

syntactic errors such as multiple instructions per line, making it clear

that only three fields can be assembled into one location's machine-

language numeral. As a result of this, we added a program which wrote

over itself by reading numerals from the student. The only way this

program could keep running would be if the student typed (as instructed)

the numerals which were the program's very instructions. This usually

clarified matters.

The orderly execution cf numerals as instructions was still more

abstract. The shopping list example (Appendix 5, curriculum page 17S)

and the house-to-house collection (Appendix 5, curriculum page 22S)

failed to motivate successor execution for some students. Programs

were written with interspersed "holes", despite the obviously sequential

relationship between instructions on either side of a hole. The self-

destructing program mentioned above helped here as well.

Addressing remained a difficult idea for many students. One

student wrote his own tine- telling program, knew what had to be done

to get minutes from seconds, knew something about addressing already,

but typed:

119

001 :TIME A
002 :DIVIDE A 60

though he did not intend to divide by the content of location 60. The

section on indirect addressing was very helpful to those students who

still had trouble with this concept. Students who had trouble with the

implicit name/value associations of the tumbers-in-boxes problem on the

preliminary test also had trouble with addressing in Simper.

The most pervasive problem was mastering the concept of context (or

locality of information) both from the student's point of view as a user

and from the point of view of instructions within his or her programs.

The most common example of the former typically occurred when a student

ran a program and decided that it needed modification. While it was

still running, and perhaps waiting for an input (for 'CASK' or 'ASK'),

he or she would type an editing command (e.g. 'LIST' or 'SCRATCH'),

fully expecting it to be obeyed. Examples of the latter centered upon

redundant or "clobbering" sets of instructions. For instance:

001 :PUT B 1 001 :PUT B 1

002 :STORE B ONE 002 :STORE B ONE

003 :ASK A or 003 :ASK B

004 :PUT B 1 004 :STORE B @A

005 :STORE B ONE 005 :PUT P .-3

In the first program, the context within the machine is unnecessarily

reset at 004 and 00' in the second, the content of location 'ONE' is

continually destroyed by 'PUT P .-3'. This latter form is a common

kind of bug and had already been exploited as such within the

curriculum. It was apparent, however, that a much more explicit

treatment of computational context was needed. Students who had the

120

most trouble with the candy-machine problem on the pretest also had

the most trouble organizing their Simper programs.

The most subtle way in which context affected the students was in

the relationship among the interpreter, the assembler and the machine.

Students did not fully grasp the distinction between editing commands

and assembler/machine instructions. Sometimes they attempted to

abbreviate the former (e.g. "SCR" for 'SCRATCH') and expect the latter

to be obeyed at once. Again we modified the curriculum in an attempt

to clarify these issues, some of which were founded upon confusing

editing time with execution time.

Some of the "holey" programming can be traced to Group III students

who learned to use Logo line-numbers in canonically sparse (10-20-30...)

sequence and hoped the same editing advantages would accrue in Simper.

Toward the end of the curriculum, procedures and their calling

sequences provided examples of how programs could be structured by

writing functionally related subunits. In this case, holes were ok.

Success here demanded that the student had mastered the concepts of

addressing and program control. Failures to structure these programs

correctly were of two forms: failure to define a proper calling

sequence, and misplacement of the calling sequence in the flow of the

program. Some inputs to procedures, particularly the return address,

were overlooked; once the call itself was incorporated as part of the

procedure body.

121

Because no students had time to do significant work on the final

part of the curriculum dealing with stacks and recursive procedures, we

lack some potentially interesting data. The notion of context could

perhaps be motivated very well here. However, our sequential pass

through the curriculum has failed to mention that we have been relying

increasingly upon data from the more able, typically older, students.

The remaining students simply did not proceed as far. How this has

colored our observations we can't say, but we can say that students who

had trouble seeing any valuable return for their relatively large

programming efforts (in comparison with Logo) tended not to proceed with

the curriculum and felt that they would "never understand Simper". And

these students were usually, but not always, less than the most able.

A few miscellaneous comments remain. Some students were active in

exploiting features of the Simper interpreter -- :or instance, the

truncation of operation names (e.g. 'STOP' for 'STORE' and 'LOAN' for

'LOAD'). One student occasionally seemed to harass the machine by

repeatedly saving a program on a file that already existed just so he

could respond "no" to Simper's warning: "a program called xxx already

exists! ok to destroy it?". The importance of clear, relevant error

messages also became apparent (see Section 5 for examples). An

example of how misreading one word can dangerously alter the meaning of

a message:
010 :SAVE
what do you want to name your program? YES
ok, yes is saved

illustrates the care that must be applied to apparently trivial aspects

of an interpreter. In line with our earlier comments about contextual

122

errors, we should mention that the above question and the students

together produced a large number of saved programs called 'SCRATCH'.

Logo. After showing students how to log in to the system, the

curriculum encouraged them to type any line they wished to the Logo

interpreter. This was for the purpose of demonstrating Logo's

understanding of English as well as giving us some understanding of what

the students expected the computer to be: numerical calculator,

omniscient authority, or game player:

COMPUTERS ARE DUMB
computers needs a meaning
COMPUTERS ARE ILLOGICAL

THIS IS GOING TO BE VERY FUN
this needs a meaning.
IT MEANS IT WILL BE ENJOYABLE

HOW MANY QUESTIONS CAN YOU ANSWER?

HOW LONG HAVE YOU BEEN IN SERVICE?
how needs a meaning
YES

yes needs a meaning.
AFFIRMATIVE
affirmative needs a meaning.
YES MEANS AGREED, CORRECT
yes needs a meaning.
I JUST GAVE YOU A MEANING
i needs a meaning.
I MEANS #176

i needs a meaning.
I GIVE UP

HOW MANY WORDS DO YOU KNOW?

WHY ARE YOU A COMPUTER?

WHERE IS GERMANY?
you are not using the train
YES I AM

MY DOG IS BLACK

THE SUNSET IS BEAUTIFUL

PLAY CHESS
play needs
PLAY MEANS

GET GOLF
something
GET GAME
something
GET PLAY
something
YOU ARE A

a meaning.

TO DO SOMETHING

missing for get.

missing for get.

missing for get.
STUPID COMPUTER

After learning about literals and several commands, Groups I and

III began Part 4, while the graphics groups spent several days drawing

pictures with the direct commands learned in Part 3 -- two examples were

123

a drum set and a cube with legs. While we did not want to stifle

individual expression and force students to go through the curriculum at

the same rate, we also did not want them to grow addicted to immediate

results and frustrated by the lack of more powerful tools (i.e.

procedures) through which they could edit, store and reproduce their

pictures. These factors may be responsible for several of our early

dropouts. Had procedures been introduced at the beginning, a student

would have had a framework within which to execute direct commands and

then add them to his/her procedure via simple editing commands.

Students in Part 4 sometimes forgot to quote literals, either as

names or values, 'MAKE "ALPHABET" ABCDEFGHIJKLMNOPQRSTUVXWYZ'; they

reversed name and value positions, 'MAKE SUM OF 5 AND 9 ANSWER'; or

they attempted linked assignment through one command (not an

unreasonable expectation), e.g. 'MAKE "SNOOPY" "CHARLIE BROWN" "LINUS"'

(where the curriculum intended 'MAKE "SNOOPY" "CHARLIE BROWN"' and 'MAKE

"CHARLIE BROWN" "LINUS").

Some initial confusion about Logo's colon notation (i.e. 'THING OF

"SNOOPY"' could be written alternatively as ':SNOOPY:') resulted from

the poor quality of our photocopied lineprinter listings: some students

mistook ";" or "1" for ":". Others tried expressions such as

'::SNOOPY::' to mean 'THING OF THING OF "SNOOPY"', but Logo

(inconsistently) does not permit the nesting of colons. Logo allows

numbers to be names also but this later led to some unfortunate

confusions between literals and names, and actual and formal parameters.

124

1

Armed with the procedure examples from Part 5 and the 'PRINT'

command, many students chose to make posters and print endless

statements.

TO TOM
10 PRINT "IF TOM WAS NOT GREAT I WOULD STOP WRITING"
20 TOM
END

Pictures of various Star Trek ships appeared ('KLINGON.BATTLE.CRUISER',

'ENTERPRISE', and 'GALILEO') as well as interpretations of the human

anatomy. Students wrote procedures for each letter of the alphabet and

other procedures t' type messages one letter at a time. For example:

TO HELLO Still the concept of a literal string was not firm in
10 HHH

20 EEE student's minds: strings often appeared unquoted or
30 LLL

40 LLL partially quoted when involving the special character
50 000
END "il" (used by Logo to provide additional "real" blanks

since all but one blank between words is deleted when sentences are

stored). Studencs may have believed that # was a command to type

blanks and therefore (correctly) did not quote it. After Part 6 (and

with the aid of the first page of Part 9), the students could specify

messages as Logo strings, e,g, 'POSTER "HELLO", 'POSTER "TELETYPES HAVE

PORNOGRAPHIC MEMORY BANKS"' and 'POSTER "THIS SIGN HAS NO MEANING IT HAS

NO INPUT AND GIVES NO OUTPUT". Despite high enthusiasm, many students

abandoned their cwn tool-building efforts when they discovered that a

poster program (Snocpy :axrying a nicely formatted sign) already existed.

Graphics students wrote procedu.ts of analogous complexity

(examples below) but producing results cn the display screen often did

125

not provide the same reinforcement as producing hardcopy to take home.

The plotter was late in arriving, and our attempts at photographs were

poor since our borrowed camera lacked a proper hood attachment.

TO DANCE TOWHEE TO CARDS

10 POKE 10 FRONT RANDOM 10 SQUARE

20 UNPOKE 20 RIGHT RANDOM 20 RIGHT 10

30 RIGHT 90 30 WHEE 30 CARDS

40 DANCE END END

END

Students sometimes forgot to provide input names in the 'DOUBLE'

procedure or spelled them differently from occurrences in the procedure

body; they put colons around the numeral 2 ('OUTPUT PRODUCT :NUMBER:

forgot the command for multiplying (should the name reflect the

operation ('MULTIPLY') rather than the result ('PRODUCT') ?), or squared

the number instead of doubling it ('OUTPUT PRODUCT :NUMBER: :NUMBER:?).

Since Logo accepts noise words such as 'OF' and 'AND', many students

expected to be able to use "BY" in the division command used in their

' UNDOUBLE' procedure. This led us to question the use of Logo noise

words at all, and suggested that students should be able to add their

own sets of noise words. Some examples of these problems follow.

TO UNDOUBLE (missing input)

TO UNDOUBLE IS TO TAKE HALF

TO UNDOUBLE :THING OF :NUMBER:

UNDOUBLE MEANS TO DIVID

PRINT DIVIDE :NUMBER: BY 2

PRINT DIVISION :NUMBER: :NUMBER:

PRINT QUOTIENT :NUMBER: DIVIDED BY 2

126

OUTPUT QUO :NUMBER: BY 2

OUTPUT QUO :NUMBER: :2:

OUTPUT QUO :NUBER: :NUMBER:

OUTPUT DIV 2 :NUMBER:

OUTPUT QUO OF :NUMBER:
AND :NUMBER: BY 2

The next problem in Part 6 was a functional relation taken from the

prelithinary test; it was also used in the Simper curriculum:

"What function (rule) using only simple arithmetic, can you
find which changes

each of these numbers into each of these numbers

3 15

4 17

10 29

Write a procedure that uses this rule. (If you don't know
the rule or how to start the procedure, ask a tutor)."

We hoped that students would use their 'DOUBLE' procedure in the

solution:

TO RULE :NUMBER:
10 OUTPUT SUM 9 AND DOUBLE :NUMBER:
END

But those not using 'DOTTBLE' often became entangled in the mysteries of

nested expressions, noise words and syntax in trying to produce:

'OUTPUT SUM :NUMBER: AND SUM OF :NUMBER: AND 9'. Other examples

are:

OUTPUT SUM :ITUMBER: :NUMBER: 9 (missing a SUM)

OUTPUT SUM :NUMBER: :NUMBER: SUM OF 9 (SUM in wrong place)

SUM OF 9 TO THE PRODUCT OF :NUM: BY 2

TO CORRESPOND 3 TO 15, 4 TO 17, (an interesting but
AND 10 TO 29 illegal title)

TO ADD :NUMBER:
10 OUTPUT SUM DOUBLE ADD 9 (unbounded recursion)

MULTIPLY :NUM: BY 2
ADD 9

MAKE PROD :NUMBER: AND 2 ANSWER
OUTPUT SUM OF ANSWER AND 9

In the last two examples, students appeared to understand the "rule" but

tried writing the expression on two sequential command lines, forgot the

names of the 'PRODUCT' and 'SUM' operations, did not quote names or

reversed the name and value inputs to 'MAKE'.

In drawing complex pictures, students were encouraged to decompose

these into more basic geometric shapes. They were helped in writing

programs to draw shapes of any size. In three of the following

'RECTANGLE' examples (all from different students), errors indicate that

the students may be trying to give values to the procedure inputs at

define time; in addition, there is a curious lack of the commands

('FRONT') to do the actual line drawing.

TO REC :LENGTH: :WIDTH: TO RECT :LENGTH: :WIDTH:

10 PD 10 20

20 :LENGTH: 20 50

30 RIGHT 90 END

40 :WIDTH:

END TO RECT :LEN: :WID:
10 OUTPUT RECT 6 3

TO RECT :LEN: :WID: :200: :50: END

The first problem in Part 7 was analogous to 'DOUBLE' for strings:

"Write a procedure called AGAIN that doubles its input word
(its input is a word), and outputs the resulting word.

When you type this you should get

P AGAIN "DOG" DOGDOG

P AGAIN AGAIN "ALDO" ALDOALDOALDOALDO
P AGAIN W "BL" "ACK" BLACKBLACK

P AGAIN :EMPTY:
P AGAIN 12345 1234512345

E :rors in solving this problem (examples follow below) and other

problems from this section involve coordinating procedure inputs, the

128

correct functional operations, and the 'OUTPUT' command. Students

forgot to put input names in the title, used literals in place of names,

or used names different from those named in the title. For these

latter, Logo happily supplies the default value ':EMPTY:' rather than

complaining about an undefined variable. Inconsistently, undefined

procedures are not defaulted to "no-ops", and a name and its default

instantiation do not appear when the student requests a list of all the

names in the workspace. Students sometimes substituted 'PRODUCT' for

'WORD'; the noise word 'AND' appears in several contexts suspiciously

like an infix concatenation operator -- another reason why default noise

"ords should be eliminated, certainly those which have a strong, clear

meaning in natural language.

TO AGAIN :W:

10 OUTPUT WORD :W: :W:

END
(a solution)

P "INPUT" @ W "INPUT" P WORD AND WORD

P "WORD" PLUS "WORD" OUTPUT WORD OF "WORD" AND "WORD"

OUTPUT PRODUCE :LETTERS: 2 :WORD: REPEAT

OUTPUT :WORD: AND :WORD: :W: WORD :W:

OUTPUT WORD :DOG: :DOG:

OUTPUT INPUT :WORD: AND :WORD: AGAIN

Students wrote procedures to return the second and third letters of

a word. These were intended as building blocks for a procedure called

'SWITCH13' which would exchange the first and third letters of a word.

Students often fail4d to break the problem into manageable parts and

thereby notice that some of the components had been solved previously.

129

.4.

We were looking for solutions of the form 'OUTPUT WORD WORD WORD THIRD

:W: SECOND :W: FIRST :W: BF BF BF :W:' ('BF' is the abbreviation for

'BUTFIRST', 'F' is the abbreviation for 'FIRST'). Several students

mentioned the input only once (i.e. 'OUTPUT W W W F BF BF F BF F BF BF

BF :W:') -- they may have believed that :W: was automatically

distributed and that they need only mention it once. The following is

typical of the half Logo, half English procedures which occasionally

appeared.

TO SWITCH13
10 THIRD :INPUT:

20 FIRST :INPUT:
30 PUT THIRD FIRST AND FIRST THIRD
END

Students in the teletype groups were asked to write a recursive

procedure to type dashed lines where the "dash" could be any character.

Simper students worked on a similar problem. The graphics students

worked on a 'DASH' procedure with one input for the visible part and the

other input specifying the gap length. Example attempts include:

TO DASH TO DASH :DIS: :TANCE:

10 RUN 10 PENDOWN

15 FRONT 100 20 FRONT :DIS:

20 PENUP 30 PENUP

25 FRONT 10 40 FRONT :TANCE:

30 PENDOWN 50 DASH :DIS: :TANCE:
35 LINE 15 DASH 60 DASH :DIS: :TANCE:

END END

Since we did not teach about Logo's 'GOTOLINE' command, the example

on the left must contain influences ('RUN' and 'LINE 15 DASH') from

Basic or Simper. the 'DASH' procedure on the right does draw dashed

lines, but the extra line 60 indicates that there is some doubt in the

130

student's mind about how recursion works -- perhaps she expected only

three dashes to be drawn (e.g. by lines 10-40, 50, 60).

Teletype students produced a diagonal dash program and tried a

recursive procedure with a changing input to do ripple printing, which

is similar to an earlier problem, i.e. move the first letter to the end

of the word, repeatedly: BANANAS, ANANASB, NANASBA, etc. Graphics

students wrote a procedure to bend lines (i.e. make polygons) with two

inputs: the distance the turtle moves and the angle to turn each time,

and then modified it ('BD' below) to make spirals (they later made 'BD'

stop after some number of iterations).

TO SQUEER :SZ: :TU: TO BD L A
10 SQUARE :SZ: 10 FRONT :L:
20 PENUP 20 RIGHT :A:
30 SQUEER DIFF :SZ: :TU: :TU: 30 BD :L: SUM A
END END

The 'SQUEER' procedure makes patterns of nested squares. Students

enjoyed experimenting with different number inputs to these procedures.

One frequent error was forgetting to specify all of the inputs in a

direct command or recursive call, especially when that input does not

change: for example omitting the last :I: in line 30 of 'BD'. One

student defined the following unusual construct:

TO STEVE :BD 17 16 48:
10 :BD 17 16 48:
END

She then typed 'STEVE BD 17 16 48', which incidentally works because in

attempting to bind STEVE's input, Logo runs BD and waits for a value,

which never comes. We suspect that the student did not realize this;

131

trying 'STEVE' with a different call to 'BD', with 'STEVE' and 'BD'

traced, would have helped correct this mistake.

For an 'EVENP' procedure which returns "TRUE"' if its number input

is even, and "FALSE"' if it is odd, students had trouble with

distinguishing 'OUTPUT' and 'PRINT' and expressing numerical tests

(infix expressions might be more natural). 'OUTPUT', from the

students' point of view, was apparently not the best choice of words,

hence we added 'RETURN'. One might also consider words 'REPLY',

which tend to better describe the message-sending/receiving activity

going ca during Logo's evaluation.

TO EVENP :NUMBER:
10 TEST ZEROP REMAINDER :NUMBER: 2
20 IFTRUE OUTPUT "TRUE"

30 IFFALSE OUTPUT "FALSE"
END

(one solution:

these three lines could be
replaced by OUTPUT ZEROP
REMAINDER :NUMBER: 2)

OUTPUT "TRUE" IFTRUE DIVIDEND OF :NUMBER: 2 LEAVES NO REMAINDER

IFEVEN P TRUE
IFUNEVEN P FALSE

OUTPUT "TRUE" IFTRUE EVEN
OUTPUT "FALSE" IFFALSE ODD

TO HORZDASH :PAPER:
10 TEST ZEROP :PAPER:
20 TYPE "4"
30 HORZDASH DIFF :PAPER: 1

END

P FALSE IF NOT DIVISABLE BY 2
P TRUE IF DIVISABLE BY 2

(result of the test is ignored)

Students wrote procedures to type dashed lines and make their

teletypes sound like ringing telephones; graphics students made the

turtle dance by poking ('TURTLEPOW) its head out on even degree turns,

and pulling it in on odd degree turns.

132

Binary "life" (see Appendix 4) uses a Logo string of O's and l's

as a colony of reproducing creatures on the planet Binar, with each

new generation appended to the colony based on the oldest (leading)

generation which then dies. The colony bewmes extinct if it ever fell

below a certain critical size. This project was quite popular with

students. They tried to predict which initial states would result in

expansion, steady state or extinction. One student also experimented

with changing the rules.

Parts 9 and 10 contained numerous examples of projects combining

most of the earlier concepts, but, unfortunately, few students started

these sections; reasons include vacations, involvement with two

languages and curricula (Groups I, II, and III), and other projects.

Students embarked on several projects of their own choosing. A

"Madlibs" program typed "story skeletons" with certain nouns, verbs,

adjectives and adverbs supplied by the program user, often with

hilarious results. The use of one procedure input per missing word

worked well for small numbers of words but needed a more general scheme

for prompting and obtaining values. In the days of pre-animation

graphics, a launch procedure gave the illusion of a rocket trajectory

by drawing and erasing a gradually shrinking, rising and tilting rocket.

One ambitious student drew a pool table with pockets, cue stick, rack

and balls. He then programmed a movie sequence for the break and

several shots via 'ZAP'-ping and redrawing appropriate parts of the

scene. One graphics student abandoned his drawing activities for

several days in order to make an elaborate poster saying "SIMPER IS

133

FULL OF SUDS". Another student produced what we thought was a novel

approach to drawing a circle with a turtle:

TO CIRC :RAD:

10 FRONT SUM :RAD: 1

20 PENDOWN
30 BACK 1

40 PENUP
50 BACK :RAD:
60 RIGHT 1

70 CIRC :RAD:

END

In closing, we mention several examples of student behavior.

One girl usually began her session by typing 'MAKE "GAIL OLDS" "THE

GIRL THAT IS TYPING ON ME". Several of the graphics students spent

the remainder of the morning on teletypes after their regular hour was

done. Some students logged in on several terminals so that they could

make posters while programming. General reactions to errors ranged

from logging out (using 'GOODBYE' or their own togout or "selfdestruct"

procedures), to shifting tasks (trying familiar procedures they had

written earlier), random typing (many "carriage returns" on graphics

terminals eventually scrolled the text area, thereby erasing the error

message), asking tutors for help, or trying to respond in an intelligent

(although English) way.

MAN STICK IT IN YOUR EAR
man needs a meaning. stick needs a meaning.
MAN DOESN'T NEED A MEANING, YOU DO TO INSERT

SEE

you are not on an imlac
WHY NOT?

illegal mem alloc trap..from 13125
ILLEGAL MEN IN ALLOC TRAP

134
;- V.4

WHEN I FINISH TYPING THIS LINE
LINE YOU WILL REPEAT IT AFTER
YOU TRANSLATE IT INTO YOUR
MEMORY BANK

6.2 Evaluation of Simper and Logo

As a result of the experiment, we have various modifications that

we have made or would like to make tc the languages and devices used by

our students. We will discuss these along with general comments about

their pedagogical usefulness.

Simper. First targets for change were obvious bugs and

inconsistencies in command evaluation and assembly. For example,

'SCRATCH' was modified to accept the general form for an address-range

specification (e.g. 'SCRATCH 6:8' has the obvious effect). 'SAVE' and

'GET' now accept the name of the file as an input (e.g. 'SAVE GLOP'),

resorting to the dialog mentioned earlier only when an input is lacking.

A more subtle change was made to 'SLIDE'. One student was frustrated

when his memory space was effectively exhausted even though numerous

holes existed between program segments. A forward 'SLIDE' (e.g. 'SLIDE

100:200') now recursively squeezes out such holes to make formerly

impossible relocations possible. The user is informed of which holes

disappear.

In the interest of making the name fit the action, 'FIX' was

replaced by 'EDIT'. This was also done to reduce the language burden

of learning both Logo and Simper.

New operations and a new command were added. 'LEXOR' gives a

decimal version of "exclusive or" (Table II), 'ERROR' tests for

arithmetic overflows, 'IOT' communicates with the Graphics program and

the plotter, and 'NEWS' gets the system time schedule and any new

135

a hi

information about Simper (or Logo). 'DIVIDE' was modified to set a

flag, detectable by 'ERROR', on division by zero, instead of the

previous and unusual skip-if-successful convention.

The structure of the Simper machine itself was modified. Five-

hundred memory cells and four registers (i.e. A, B, C and P) were made

standard (with upper limits as shown in Figure 2). This was motivated

by students suggesting projects for which 250 memory cells would be

insufficient. The additional register was added to make procedure

calls more convenient, especially via a student-programmed stack. The

changes were achieved by a generalized restructuring of the interpreter.

Recommendations. Changes are relatively easy to make in Simper

because it is written in a high-level language. An important

improvement would be the simulation of a micro-coded machine with

interrupt handling, so that students could be exposed to some aspects of

modern machines. Simulated devices other than the turtle (e.g. a disc)

could also be pedagogically beneficial. However, too many "features"

can be detrimental. Since one of the most valuable computational ideas

is that problem solutions can be broken logically into parts that are in

turn realized by certain basic and sufficient abilities of some machine,

the abilities chosen should not be too powerful.

Perhaps the most beneficial results would be achieved by making the

interpreter smarter and more congenial in terms of its responses to

naive programmers. A first step would be a structured treatment of the

t7t or tHELPt command. Successive applications of this command in,

say, an address field would obtain successively more detailed help about

136

address fields. In this respect, the interpreter would be more

knowledgeable about itself. More general (and more difficult) powers,

such as the ability to evaluate programs, would be of obvious value in

counselling students.

Except for a few run-time bugs introduced by the Sail compiler, the

Simper interpreter proved remarkably durable under student use. No

student ever lost his active memory or a saved program as a result of an

interpreter fault.

Logo. In our present version of Logo, changes such as editing

error messages, adding new commands, and substantial changes to the

parsing and naming schemes range from easy to painfully difficult. Had

more resources been devoted to this project, we would have designed and

implemented our own Logo interpreter in Sail. Integrating this with

existing Sail software (i.e. train, graphics, animation) would provide

greater accessibility to data objects such as snapshots and avoid the

multiple-process structure of Tenex and the associated time penalties

incurred in using graphics and animation. In addition, it should be

easier to experiment with old and new features (e.g. parsing, filing

and program analyzing) and to use this as a model for implementing

subsets of Logo in other languages (e.g. Basic or Fortran) for users of

other, smaller machines. Another option we considered was to modify an

as yet unavailable interpreter (Mauls, 1973) written in Bcpl, which is

generally machine independent.

Recommendations. If ':X:' is to be analogous to 'VALUE "X "', then

nesting of colons should be allowed. Additionally, a different symbol

137

should be used instead of colon to delimit place holders in procedure

titles, or a different synonym for 'VALUE' could be chosen (e.g. " @ ").

Numerals should be disallowed as names. More fundamentally, we suggest

that atom names and procedure names use the same dictionary and notation

(e.g. 'A' could either stand for 'VALUE "A"' or call procedure 'A', as

in Algol 60). Pedagogically speaking, any distinctions of program from

data should be defined by the student and not be automatic.

Command Evaluation. When a student types the 'MAKE' command but

omits one or both inputs, Logo prompts for the missing inputs (after

typing "NAME" or "VALUE" as appropriate) rather than yield an error

message as is the case with all other commands. Control over

evaluation and error handling must be more generally accessible in order

to be a useful rather than an inconsistent feature. Commands for

editing, erasing, listing and filing currently quote rather than

evaluate their inputs (i.e. 'EDIT ROCKET' instead of 'EDIT "ROCKET"'

thus disallowing 'EDIT :R:' where 'VALUE "R"' is "ROCKET") A

consistent, flexible scheme (assuming names and procedures share the

same name table as suggested above) would allow only 'EDIT "ROCKET"' and

'EDIT R'. 'EDIT ROCKET' could also be allowed if the user could make

his own procedure definitions that quote or evaluate inputs at will --

all in the interest of consistency, which is very important to naive

programmers. A further simplification would result if one operation

(e.g. 'DEFINE' or 'HOWTO') performed the functions of both 'EDIT' and

'TO', since the only difference is the pre-existence of, or lack of, a

definition.

138

Noise words should be eliminated unless they are under user

control. Logo should emulate Lisp in returning values for all commands

and perhaps printing these values at the top level rather than giving

the message "THERE IS NO COMMAND FOR..." when a student forgets to

precede a function call with a receiver for its reply. A user-

controlled toggle for auto-value-printing would be a useful debugging

aid. This would make 'STOP' and 'DONE' equivalent to 'RETURN "".

Logo should allow multiple commands on a line, even though these

would be more difficult to edit and might introduce ambiguity. Then

the semicolon comment-toggle would truly make sense.

Error Messages and Primitive Names. Synonyms for commands (e.g.

'REPLY' or 'RETURN' for 'OUTPUT', and 'DONE' for 'STOP') have been added

to clarify certain concepts. Error messages such as "OUTPUT CAN'T BE

USED AS AN INPUT IT DOES NOT OUTPUT" have been edited. Misleading

messages such as "OUTPUT CAN ONLY BE USED IN A PROCEDURE" require

additional logic to determine context: in response to the situation of

typing 'OUTPUT' as a direct command during procedure editing, the

message should be that 'OUTPUT' cannot be a direct command and should be

preceded by a line number. Error messages should not end with a "?"

unless the interpreter is able to engage the student in a helpful dialog.

Editing and Filing. One common desire was to change a line in a

procedure with one rather than two commands -- commands such as 20 and

'EDL 20' typed at Lo,p's top level resulted in the messages "LINE 20 OF

WHAT PROCEDURE?" and "EDIT WHAT? YOU ARE NOT DEFINING ANYTHING" which

may have misled students into trying the following commands:

139

EDIT LINE 10 OF UNDOUBLE

ERASE LINE 6 IN RECTANGLE

TO 35 OF RECTANGLE

TO "35" OF RECTANGLE

EDIT LINE 10 IN TRI2

P LINE 15 Li STOP

TO @35 OF RECTANGLE

Since we view line numbers as an editing convenience for non-display

devices rather than as necessary labels for controlling procedure

evaluation, continued work with graphics terminals should include

experiments with different editors.

Students often included extra words (some which Logo used in

messages), noise words, or expressions in commands such as 'EDIT',

'ERASE', and 'LIST', which do not obey the general Logo evaluation

scheme; hence, error messages were often puzzling.

EDIT TO EVENP
you can't edit that.

ERASE :XI:
erase what?

END
again defined
UNDEFINE AGAIN
undefine needs a meaning.

LC OF FILE OF MARTA
of can't be a file name

GET GAIL FILE
file can't be a file name.

EDIT :XI:

you can't edit that

ERASE TO SQUARE
erase what?

LIST ALL FILES
list all what?

LIST NAMES
something missing for list.

LIST ALL THAT WAS DONE TODAY
list all what?

GET FILE PC136 VOWELP
file can't be a file name.

As a convenience, it might be helpful to allow some default

applications of operations like 'LIST'. For instance, when 'LIST',

'EDIT', 'ERASE' ox 'EDIT LINE xx' is typed with no input, the default

140

148

input would be the name of the last procedure 'END'ed or the last

procedure in which an execution error occurred.

The distinction between what is in Logo's immediate memory

(workspace) and what is on secondary storage (file entries) is confusing

even to adults. By saving an entire workspace on an "entry", it is

fairly easy to 'GET' everything back at a later time. But since the

workspace could cpntain the appended results of several 'GET's from

other entries (from other people's files too), there is often

unnecessary duplication in 'SAVE's. One should have the ability to

save partial workspaces (groups of procedures) on entries.

SAVE GAIL TRIANGLE
SAVE GAIL RECTANGLE
SAVE GAIL REPEAT

(this replicated Gail's workspace
in three separate file entries)

SAVE LIZ D AND UD AND SQUARE (Liz wanted to save individual
procedures on separate entries)

We found examples of student typing, some almost verbatim from the

curriculum, which we might expe.:: a reasonable computer-based tutor to

be able co handle The naive approach of merely automating a

programming curriculum (such as ours) by typing text at the student will

accomplish lictie in dealing with such questions. We believe that the

language interpreter shoui. "know" something about what concepts and

problems the curriculum is presenting and the int:nts of procedures the

student is writing.

HOW MANY INPUTS DOES "MAKE" HAVE?

REQUEST A LITERAL/

literal needs a meaning,
lVil ir DOESN'T

141

HOW MANY INPUTS DOES PRINT HAVE

IS "GEORGE" A WORD?

The ability to answer these questions is easily given to Logo because

the subject terminology (perhaps excepting "literal") is Logo's.

Since Logo already checks procedure lines for matching quotes and

colons at the time they are typed, it would seem advantageous to report

other kinds of syntax errors at "define-time" rather than at "run-time".

For example, erroneous number of inputs for primitive commands and user

procedures, and undeclared procedures or names (not defined globally

or in the procedure's title) could be reported after every line typed,

before taking the student out of "editing mode", or upon request. The

student can act on these suggestions and make further editing changes,

execute the partially defined procedure while still in editing mode, or

exit to work on something else. Although this would be of little help

in detecting semantic errors, it could serve to minimize the amount of

time students spend in discovering and correcting syntax errors one at a

time.

6.3 Implications for Language and Curriculum Design

Reports of tutors about student involvement in different parts of

the curriculum and their own projects, real or planned, led us to make

curriculum changes involving the order of the concepts presented and

techniques for explaining certain concepts. For example, names were

viewed as belonging between literals and procedures in complexity, and

as prerequisites for procedure inputs and list-like data structures.

142

For Simper, most changes centered upon better motivations for:

context, sequential execution, addressing and assembly language. The

machine'? language of numerals would be taught before assembler syntax

so that students would grasp the latter's reason for existence as well

as its structure. The fact that different languages are appropriate

for different interactions with Simper would be exploited in teaching

about computational context. The intercommunication of instructions

(e.g. via the repisters) within prograws would also be treated in terms

of context.

We found that students were not particularly motivated by Logo-Part

4 because, for all their efforts, only a few strings appeared on their

terminals. Introducing the turtle commands in the context of the first

procedure example would have allowed students to start editing and

saving their initial pictures rather than using ti less enduring direct

commands. As a result, names should be introduced first when

procedures need them as inputs (formerly Part 6), and procedures should

be introduced immediately after literals.

If testing had been introduced earlier than Part 8, where its chief

use was to provide stopping rules for recursive procedures, students

could have emba'ked earlier on their own projects, e.g. games like

Blackjack and guessing numbers. This also has the advantage of not

compounding testing with already difficult concepts behind recursive

procedures with changing inputs.

The graphics curriculum must provide a more clear-cut case for the

advantages of graphics. By replacing the numerous teletype examples by

143

24.

problems using graphics and animation, while maintaining a parallel

ordering of concepts, results of comparing teletype and 3raphics

curriculum can be more meaningful; in addition, two separate but

parallel problem domains can provide for interesting testing of transfer

for students from each curriculum. The curriculum can be enhanced by a

computer-based tutor's use of graphics in presenting examples (one use

is discussed below) and providing editing and debugging facilities.

The curriculum format of path pointers, questions, problems and

things to try was generally well-received by students. Certain

connecting ideas or processes such as how expressions are evaluated and

how procedure evaluation proceeds are difficult to sequence on paper,

and the flowchart-like diagrams with boxes and arrows we tried were not

particularly effective. The younger children had especial difficulty

with these artifices, for the same reasons they had trouble with the

candy-machine problem on the preliminary test. Good yet static

representations of essentially dynamic processes are hard to come by.

The "brothers" with knowledge clouds did test understanding when some of

their states were left blank, but were of little help in mapping this

understanding into a Logo procedure, One possibility is that Logo

could graphically simulate some of its own internal workings. As an

example of this idea, a film animating the evaluation of a Logo

procedure has been done by Ron Baecker and students at the University of

Toronto (Baecker, 1974).

144

7 Final Comments

Having modified both curricula and interpreters and gained

confidence on the extent to which the preliminary tests predict success

in the original curriculum, we proceeded to repeat the experiment with

smaller, better controlled groups of students and more uniform tutoring.

Analysis of this second effort, and a more thorough study of Groups I,

II and III of the experiment we have been discussing, will appear in a

separate report (Cannara, 1975).

145

Appendices

The appendices included here pertain to the summer experiment of

1973. The states of Logo, Simper and the curricula are reflected here

as they were during that experiment, unless noted otherwise. Some Logo

operations fit into none of the following appendices, so they are

included here.

Miscellaneous IMSSS Logo Primitives

Any abbreviations are included beneath the full operation names,

the number of inputs (arguments) required is noted in parentheses with

the description of each operation, and "$" indicates operations which

were implemented after, and partly as a result of, the experiment

discussed in this report.

ASCII (1-input operation) the input is the octal ASCII code of the
character to type, e.g. ASCII 10 types a backspace

ASKCHAR (1-input operation) return a character from the terminal (the

ASKC input is the number of seconds to wait before returning :EMPTY:
if nothing is typed, see ASK)

ASSIGN $ equivalent to MAKE (not implemented)

BLANK (0-input operation) equivalent to TYPE :BLANK:

BREAK (0-input operation) interrupt program execution as if CTRL-G had

been typed (see GO, CANCEL)

DEFINE $ equivalent to TO (not implemented)

DONE $ equivalent to STOP

HOWTO $ equivalent to TO (not implemented, but TO could be HOWTO's
abbreviation)

RAND (2-input operation) return a random integer from the range:
(first input, second input)

146

REPLY $ equivalent to OUTPUT (not implemented)

REQUESTCHAR (0-input operation) return a character from the terminal
RQC (see REQUEST)

RETURN $ equivalent to OUTPUT

SAMEP $ (2-input operation) equivalent to IS

SAY (1-input operation) audio system speaks a word or sentence,
spelling any words for which it has no unitary, prerecorded
sounds

VALUE $ (1-input operation) equivalent to THING

WAITM (1-input operation) the input is the number of milliseconds to
wait (not very accurate when the Tenex system is busy, see WAIT)

Appendix 1: Graphics

In this appendix, we describe in some detail the two types of

graphic devices available to Logo users: the TEC(R) and IMLAC
(R)

displays. Tables of the relevant Logo operations are included.

IMSSS Logo is aware of the various types of terminals available to users

and so can correctly execute some operations in more than one way,

automatically producing an effect appropriate to the device at which the

user happens to be (e.g. 'LEFT' works for the TEC, the IMLAC and other

devices, Appendix 2). In the following tables, any abbreviations are

included beneath the full operation names, the number of inputs

(arguments) required is noted in parentheses with the description of

each operation, and "$" indicates operations which were implemented

after, and partly as a result of, the experiment discussed in this

report.

147

1.1 TEC
(R)

The TEC is a raster-scan (video) display whose screen is refreshed

from a shift-register memory. It cannot be made to draw lines, but it

possesses extensive abilities for editing the text appearing on its

screen. Under program control, these abilities are accessed by sending

certain ASCII characters (some are "control" characters, some are lower-

case) to the device. The user's typing is restricted to upper-case.

The abilities thus available to a Logo user are described in the

following table, after which a sample Logo program that simulates an

Elevator is included.

IMSSS Logo TEC(R) Primitives

BLINKOFF (0-input operation) terminate blinking region at cursor

BLINKON (0-input operation) start screen blinking to right of and below

cursor

BOX (0-input operation) type a "box" character

CLEAR (0-input operation) clear the screen and then HOME
CS

DELETECHAR (0-input operation) erase character at cursor position and

DC move the rest of line left one character

DELETELINE (0-input operation) erase line cursor is on and move lower

DL lines up one line; move cursor to beginning of the line

DOWN (0-input operation) move the cursor down one line (wraparound
from bottom to top of the same column)

ERASEDOWN (0-input operation) erase the screen to right of and below

EEOP cursor

ERASERIGHT (0-input operation) erase rest of line to right of the

EEOL cursor

HOME (0-input operation) move the cursor to the upper left corner of

the screen (0,0)

148

INSERTCHAR (0-input operation) insert a blank character at cursor
IC position and move rest of line right one character

INSERTLINE (0-input operation) insert a blank line at cursor position
IL and move lower lines down one line (last line is lost) move

cursor to the beginning of the line

LEFT (0-input operation) move the cursor left one character
(wraparound from left edge to right edge of row above, and from
top left corner to bottom right corner)

MOVEXY (2-input operation) move the cursor to absolute screen position
(the column (first input) is between 0 (left) and 79 (right),
the row (second input) is between 0 (top) and 23 (bottom))

RIGHT (0-input operation) move the cursor right one character
(wraparound from right edge to left edge of row below, and from
bottom right corner to top left corner)

UP (0-input operation) move the cursor up one line (wraparound from
top edge to bottom of same column)

The following is a listing of a Logo elevator simulator that uses

some of the operations above to "draw" and move a 10-story elevator on

the TEC screen. 'START' initiates the simulation.

TO START ; Initialises the simul6t1on
10 CLEAR.
20 MAKE CAPACITY" 10 ; 61evator's 612e
30 MAKE "FLOOR .10 building's height
40 MAKE CENTER 36
50 MAKE "BOTTOM 22
60 ELME I put people on the floors
70 SKIP
80 MAKE :CUI01" 250
90 MAKE SLOW 900
100 MAKE FLOOR RAND 1 10

110 MAKE "ELEVATOR RAND 0 :CAPACITY:
120 RUN
END

TO RUN
10 TEST ZEROP SUM THING WORD "FLOOR" :FLOORS :ELEVATOR:
20 IFTRUE SHOW :QUICK: FLOORPOSITION
30 HELL
40 IFFALSE SHOW :SLOW: FLOORPOSITION
50 RIGHT
60 UNLOAD
70 MOVEXY SUM :CENTER: 1 FLOORPOSITION
80 LOAD
90 MAKE ELEVATOR" SUM :GOTON: DIFFERENCE :ELEVATOR: :GOIOFF:
100 MAKE WORD "FLOOR" :FLOOR:

DIFFERENCE SUM THING WORD "FLOOR" :FLOOR: :GOTOFF1 :GOEON:
110 MAKE "X BUTFIR5T DIVISION RANDOM 2
120 TEST ZEROP :X1
130 IFTRUE MOVEDOWN
140 IFFALSE MOVEUP
150 SKI?
160 RUN
END

TO PEOPLE
10 TEST ZEROP :FLOOR:
20 LFTRUE STOP
30 MOVEXY 10ENTER: FLOORPOSITION
40 TYPE
50 MAKE WORD "FLOOR".:FLOOp RANDOM
60 FOLKS.THING.WORD FLOOR FLOOR:
70 MAKE FLOOR DIFFERENCE :FLOOR: 1

80 PEOPLE
END

TO FOLKS :N:
10 TEST ZERCP :N:
20 IFT20& STOP
30 TYPE
40 FOLKS DIFFERENCE :N: 1

END

149

TO FLOORPOSITION
10 OUTPUT DIFFERENCI BOTTOM' PRODUCT 2 'FLOOR,
DID

TO SHOW 'TIME: :POSITION,
10 RESET 'POSITION'
20 SOX
40 FOLKS 'ELEVATOR'
O SOX
70 WAITS 'TIRE,
SO RESET 'POSITION'
SO SLINKS SUN 2 'ELEVATOR'
END

displays the elevator

1 and those in it

for a little vhile

I then erases it

TO UNLOAD
10 MAKE %VW!" RAND 0 'ELEVATOR'
20 GETOFF IGOTOFFI

TO LOAD
10 MAKE °CATON. RAND 0 MINIMUM THING WORD "FLOOR. :FLOOR,

SUM 1007011: DIFFERENCE :CAPACITY: tELEvArORt
20 GETON IGOTONt
DID

TO KOVEDOWN
10 TEST ECUALP 'FLOOR' 1

20 IFTRUE KOVEUP
30 IFTRUE STOP
40 SHOW IQUICK1 SUm FLOWPOSITION 1
50 MAKE FLOOR DIFFERENCE 'FLOOR: 1

END

TO MOVEUP
10 TEST EQUALP :FLOOR, 10
20 IFTRUE MOVEDOWN
30 IFTRUE STOP
40 SHOW IQUICAI DIFFERENCE FLOORPOSITICN 1
60 MAKE FLOOR SUM 'FLOOR: 1

END

TO RESET tY1
10 KOVEXY DIFFERENCE :CENTER' SUM 2 tELEVATCAt tYt

IND

TO BLANKS tilt
10 TEST ZtROP
20 IFTRUE STOP
30 BLANK
40 SLAMS DIFFERDIC71 tilt 1

LSD

TO GITOFF 1St
10 TEST ZEROP tilt
20 IFTRUE STOP
30 INSERICpR
40 TYPE
50 GEtOfF DIFFERENCE INS I

IND

TO GETON 1St
10 TEST MOP nit
20 initue STOP
30 DtLETECHAR
40 GETON DIFFERENCE
tND

tilt t

.111

-1111;

-1111

-111111111

-Mil

-18111;

_1111111

_Il

Xliiiills_

-11111;

-111

-11111

-MI

-11111111i

-Mil

_111111

-1111111

_II
sill

_MI

_111111

-ill

-11111

-111;

-111;1111;

-11111

_Mill

-1111111

Silikl

-1;11

-11;111

150

1.2 IMLAC
(R)

'sr

The IMLAC is a stand-alone computer with display capabilities which

allow it to act as a local processor for Logo graphics commands. We

first present two tables of the relevant Logo operations. Any

abbreviations are included beneath the full operation names, the number

of inputs (arguments) required is noted in parentheses with the

description of each operation, and "$" indicates operations which were

implemented after, and partly as a result of, the experiment discussed

in this report. The first table describes the animation added after

the experiment.

IMSSS Logo Animation Primitives$

ENDSNAP (0-input operation) finish defining the current snapshot, and
ENDS wipe the screen

ERASESNAP (1-input operation) escape from snapshot in progress (after
ERS SNAP, but before ENDSNAP) and reclaim drawing space and snap

number; for snapshots which have been defined, ERASESNAP
erases only the snapshot number (see WIPESNAPS)

MOVESNAP (2-input operation) the first input is a sentence of "object"
MOVS numbers (see PUTSNAP); the second input is a sentence of the

relative distance and angle to move each object respectively
(when "R" precedes the first object number, the sentence is
interpreted as pairs of relative x,y distances to move each
object); MOVESNAP returns a sentence of the new absolute x,y
coordinates for each object; automatic wraparound occurs near
screen boundaries (see WRAP)

PUTSNAP (2-input operation) the first input is a sentence of pairs of
PUTS snap and object numbers -- a zero object-number means create

a new object; an obje:t number between 1 and 100 may create or
redefine an object; the second input to PUTSNAP is a sentence
of pairs of absolute x,y coordinates for locating each object;
PUTSNAP returns a sentence of the object numbers used (see
MOVESNAP); to erase an object, redefine it to be an empty snap,
i.e. snap 0 oc any other undefined snap

151

6-1

SHOWSNAP (1-input operation) show a snap (the input number) at the
SHOS current turtle location

SNAP (1-input operation) wipe the screen, and create a "snapshot"
(the input number) out of the turtle commands that follow;
presently ZAP does not work within snaps

WHATSNAPS (0-input operation) return a sentence of the currently used
WHAS snapshot numbers

WIPESNAPS (0-input operation) wipe the screen and erase all snapshots
NIPS and objects

IMSSS Logo Turtle Graphics and Plotter Primitives

Some of these operations may be used to control both an IMLAC

display and a Hewlett-Packard model 7202A XY plotter. The letter "P"

indicates that an operation is implemented for the display and the

plotter, while "*" indicates an operation that usually was not

introduced to students.

ARC P* (2-input operation) the first input is the radius (positive
input makes the turtle go forward); the second input is the

amount of arc to draw (positive is leftward); the chart shows

the four different arcs for different signs of the inputs:

r a r a
++

->0><
- + + -

ASETX P* (1-input operation) move the turtle to absolute x

number), y remains the same

ASETXY P* (2-input operation) move the turtle to absolute x
input), y (second input) (see RSETXY)

ASETY P* (1-input operation) move the turtle to absolute y
number), x remains the same

BACK P (1-input operation) move the turtle back (the input

the distance, see FRONT)

CLEAR (0-input operation) clear the text area of the screen

erasing the turtle picture

152

(the input

(first

(the input

number is

without

COMPRESS * (0-input operation) compress MAC display lists to recover
more drawing space (only worthwhile if a picture has many
short (less than 1 inch) lines); ZAP will not work on
compressed pictures; if memory space is exhausted during a
turtle command, the message: "DO YOU WANT TO COMPRESS THIS
PICTURE? *" will appear; typing "YES" makes compression occur
and drawing will continue if enough space is recovered

FRONT P (1-input operation) move the turtle front along its current
heading (the input number is the distance, same as BACK with a
negative input)

HERE P* (0-input operation) return the sentence of the turtle's
current position and heading: x, y, angle

HIDE (0-input operation) make the turtle disappear (see SEE)

HOME P (0-input operation) move the turtle to home (see SETTURTLE);
change only position and heading (not pen, head, or visibility)

LEFT P (1-input operation) rotate the turtle left (counterclockwise
the input is the number of degrees, same as RIGHT with a
negative input)

PENDOWN P (0-input operation) put the turtle's pen down so that when the
PD turtle moves, it leaves a trace

PENP P* (0-input operation) return "TRUE" if the turtle's pen is
down, "FALSE" if it is up

PENUP P (0-input operation) put the turtle's pen up so that when the
turtle moves, it leaves no trace

PLOT P (1-input operation) direct turtle commands to the plotter
(input is the system's "tty" number for the plotter)

POKE (0-input operation) poke out the turtle's head (see UNPOKE)

RIGHT P (1-input operation) rotate the turtle right (clockwise, the
input is the number of degrees, see LEFT)

RSETX P* (1-input operation) move the turtle relative to its x
position (the input is the x distance), y remains the same

RSETXY P* (2-input operation) move the turtle relative to its x,y
position (the first input is the x distance, the second input
is the y distance) (see ASETXY)

RSETY P* (1-input operation) move the turtle relative to its y
position (the input is the y distance), x remains the same

SEE (0-input operation) make the turtle appear (see HIDE)

153

SETHEADING P* (1-input operation) set turtle to a specified angle (the
SETHD input number is degrees)

SETSCALE P* (1-input operation) set the display scale for turtle units
units per inch (the input number)

SETTURTLE P* (1-input operation) the input is a sentence of three
numbers; the first number is turtle units per inch (see
SETSCALE); the location of "home" is defined by the number
of inches to the right (second number) and above (third
number) the lower left corner of the screen, e.g. SETTURTLE
"100 4 4" (the first turtle command causes this as default)
sets a scale of 100 units per inch with home at the center of
the screen

THERE P* (1-input operation) the input is a sentence of three numbers:
x, y, and angle (see HERE); equivalent to using ASETXY on the
first two numbers, and SETHEADING on the third number, e.g.
THERE "0 0 0" is equivalent to HOME

UNPLOT P (0-input operation) direct turtle commands to the display, and
release the plotter for others to use

UNPOKE (0-input operation) pull in the turtle's head (see POKE)

WIPE (0-input operation) clear the turtle area of the screen; move

the turtle to home with PENDOWN

WRAP P* (2-input operation) the first input is a sentence of the low
and high x values to use for the screen boundaries (defaults are
"-400 400"), the second input is similar for y; line clipping
and wraparound (for MOVESNAP) occur at these boundaries

ZAP (0-input operation) erase last turtle move with pendown or
last series of consecutive moves with penup

ZIP (1-input operation) the input is the number of turtle moves

to ZAP

The IMLAC PDS-1 is a stand-alone computer with two processors.

One processor is a general-purpose, 16-bit machinci, the other is a

display processor that refreshes the PDS-1's screen 40 time:, per second

from a display list held in memory. Either processor may access memory

by "stealing" instruction cycles from the other. The PDS-1 provides a

screen resolution of approximately 96 points per inch. The screen can

154

be viewed as a mesh of overlapping character "boxes", each approximately

5/8" square. Drawing lines across box boundaries requires either

"long-vector hardware", or absolute or relative repositioning into an

adjacent box before drawing can continue. Relative repositioning

usually consumes more memory space, so we have used it only for drawing

"snapshots ", (i.e., translatable picture subroutines). The PDS-1s at

IMSSS have only 4K of memory, and lack hardware for: multiplying,

dividing, drawing long vectors, picture rotation, scaling, and

translation. Furthermore, they use only one register for calls to

display subroutines, which prevents the nesting cf snapshots (newer

models have "pushdown stacks"). To circumvent some of these

difficulties, Sailogo compiles line segments, repositionings and picture

subroutines into buffers of command words, word counts, addresses, and

data (i.e., PDS-1-code display lists) and sends these over a 9600-bits-

per-second line to a program (Graphics), running in the user's PDS-1,

that realizes Logo's graphic abilities. The program also scrolls the

user's typing and returns transmission-error ("checksum") information to

Sailogo. An organizational map of the PDS-1's memory, as defined by

the Graphics program, am:ears on the following page; a sample Logo-

graphics program follows that.

* We are grateful to John Prebus for his help with the IMLAC graphics
programming.

155

r"

executive program (Graphics) >

buffers and text display lists

character display subroutines

user display space (2048 words)

turtle display subroutines V

> head

+-

+--

> pendown

V
> penup

V
< body

40 Hertz clock interrupt
starts display program,
executive continues

V

display position to home < -+

<display jump to user picturelist

display no-op (shows turtle) <
or display halt (hides turtle) >----+

V
+--<show pen (up or down) and body

+>diaplay position to turtle head

+----<show head

/

1 STOP 1

'\

display halt (end of display program) >---+

user display subroutines: <

"character mode" increments and relative
positionings and a display subroutine return >--+

> user picturelist: a stack of "display cells"

where a display cell consists of

"character mode" increments
and absolute positionings

or

an absolute positioning
or

an absolute positioning and
display subroutine jump >

followed by a display no-op < -+

Or
display jump to show ttle (last cell) >

156

-+

flamr.aumsMI

The following is a listing of a Logo-graphics program which uses

the IMLAC display to simulate a helicopter. The helicopter may be

"flown" on the screen in response to a user's typing (e.g. "U" adds an

upward increment to the helicopter's velocity, "H" makes it hover).

The program was written by a student from the experiment discussed in

this report. It is featured as part of the movie mentioned in Section

2.2.2. The student required some help to organize his ideas in terms

of a sensible control structure. The procedure 'COPTER' initiates the

simulation, 'FLY' maintains it and interacts with the user.

TO CCPTER initializes simulation and draws needed snapshots
5 VIPLSNAPS
10 SNAP 1
20 FLYER
30 ENLSNAP
50 MAKE XVEL: 0
60 KANE "WEL 0
70 MAE "RATE 5
75 MAKE "GROUND TRUE
80 SNAP 2
90 BLADE 240 0
100 =SNAP
110 SNAP 3
120 SLADE 150 30
130 ENDSNAP
140 SNAP 4
150 BLADE 60 70
160 ENDSNAP
170 SNAP 5
180 BLADE 30 90
190 ENDSNAP
195 SNAP 6
200 EARTH 370
210 ENDSNAP
P7A SNAP 7
230 EARTH 300
240 ENDSNAP
250 SNAP B
260 EARTH 200
270 ENDSNAP
272 SNAP 9
276 ENDSNAP
280 IGNORE PUTSNAP "1 1" "0 250" ; place the helicopter on scrmon

1

290 HIDE ; turtle's work is done
295 CLEAR
300 FLY ; takeWI
END

TO EARTH :SIZE: ; draws views of ground
10 FRONT :SIM
20 RIGHT 120
30 FROF,T :SIZE:
40 RIGHT 60
50 FRONT SUM :SIZE: QUOTIENT :SIZES 2
60 OGHT 120
70 FRONT :SIZE:
SO RIGHT 60
90 FRONT QUOTIENT ISM: 2
END

157

TO FLYER
1 MU',
2 BACK 21
3 PENDOWN
4 FRONT 21
10 RIGHT 90
20 FRONT 20
30 LEFT 08
40 FRONT 30
50 PENUP
60 RIGHT 90
70 FRONT 80
BO LEFT 90
90 PENDOWN
100 ARC 40 163
110 PENUP
115 LEFT 90
120 FRONT 80
130 RIGHT 95
140 PENDOWN
150 FRONT 60
160 RIGHT 70
170 FRONT 60
180 LEFT 70
190 FRONT 110
200 PENUP
210 Rion 60
220 BACK 20
230 PENDOWN
240 FPONT 40
250 PENUP
260 BACK 20
270 LEFT 60
2110 PENDOWN
290 FPONT 15
300 RIGHT 40
310 FRONT 30
320 PIUT 60
330 mu!'
340 RIGHT 119
34S FRONT 40
3t0 LEFT 42
360 FR0NT 140
370 Lar 92
360 (.ML 20
390 Ma IP
400 BACK 60
4f0 PICHT 90
420 tfe,NT 10
410 LEFT 90
440 6A,:K 25

450 RIJh: 10
4t.) ?IN: 4mN

470 :5 180
480 :Fr: 90
490 tE:NT 50
.$00 LaT 10
510 FEN.?
520 FROM; SO
530 LEF: 93
540 FRONT 60
550 RIOrT 180
t60 PF:.:0WN
570 FRONr 45
580 LET: 50
590 FRONT 25
600 RIGHT 145
610 PENUP
620 FRONT 90
630 Leir 90
640 FRONT 15
650 PENTOWN
660 FROST 25
670 BACK 25
680 FROST 25
690 LEFT 90
700 PACK 10
710 FRONT 70
720 LEFT 95
730 FRONT 20
740 BACK 20
750 RIGHT 95
760 FRONT 10
770 ARC 35 45
END

draws the helicopter BLADE :LEN: :ROT:
10 PENUP
20 LEFT :ROT:
30 BACK OUOTIENT :LEN: 2
40 PE4D0dN
90 FRONT :LEN:
END

draws rotor blades

TO FLY ; manages the helicopter's motion
10 CHECK.
20 MAKE AIR MOVESNAP -111 2' SENTENCES :XVEL: :TM; :XVEL: :WEL:
30 TWIRL 2 5
40 mr :GROUND:
50 If TAUS SNAPDO4N
60 IFFALSE SHOd.LAND
70 FLY
END

158

:4 SO;

1

TO CHECK gives the pilot" control
10 MAKE "KEY ASKSRAR 0
20 TEST IS :KEY: U"

30 IFTRUE MARE 'ym' SUM :YVEL: :RATE:
40 TEST IS :KEY: D
50 IFTRUE MAKE "YVL.i." DIFFERENCE :YVEL: :RATE:
60 TES: IS :KEYS "L
70 IFIRUE MAKE XVEL DIFFERENCE :XVEL: :RATE:
60 TEST IS :KEY: "R.
90 IFTRUE MAKE Xi.71.. SUPS :XVEL: IRATE:
100 TEST IS :KEY A
110 IFTRUE MAKE XVEL
120 IFTRUE MAKE ym 0
130 TEST IS :KEYL P

150 IFTRUE MAKE GROUND "FALSE'
160 TEST IS :KEYI
170 IFTRUE MAKE GROUND "TRUE"
END

TO TWIRL :BS: :ES: ; twirls the rotor
10 TEST GREATERP :BS: :ES:
20 IFTRUE STOP
30 IGNORE PUTSNAP SENTENCE :BS: 2 :AIR:
40 TWIRL SUM :BS: 1 :ES:
END

TO SNAPDOWN ; makes the earth recede
10 TEST LESS? FIRST BMW? IAIR: (-100)
20 IFTRUE IGNORE PUTSNAP 6 3 0 -50
25 IFTRUE STOP
30 TEST LESSP FIRST BUTFIRST &AIR: 200.
40 IFTRUE IGNORE PUTSNAP "7 3 0 -100
50 IFTRUE STOP
60 TEST LESSP FIRST BUTFIpT Op: 400.
70 IFTRUE IGNORE PUTSNAP 8 3 0 -200
END

TO SSOW.LAND ; ground level
i0 IGNORE PUTSNAP "S 3" "0 -350"
20 TEST LESS? FIRST eTFIRST :AIR: AND - 150
40 IFTRUE MAKE "YVEL 0
END

159

Appendix 2: Controllable Devices

In this appendix, we describe some electro-mechanical devices which

IMSSS Logo now controls. Tables of the relevant Logo operations are

included with the discussions of the devices. IMSSS Logo intelligently

uses its knowledge of the type and location of any terminal that the

user might pick. For instance, the physical Train may be controlled

only from a terminal within sight of the layout; picking another

terminal causes Logo to simulate the train instead.

2.1 Robot Turtle and Music Box

A controllable robot "turtle" is available from General Turtle

Incorporated, Cambridge, Massachusetts. An interface allows the robot

to be controlled by sequences of characters (ASCII) sent to it over a

30-characters-per-second line from Logo. The interface provides

several "ports" to which one may connect turtles and/or "music boxes"

for multiplexed (seemingly simultaneous) operation. The music box, as

its name suggests, allows Logo programmers to write programs which play

or generate musical compositions. It is an output device and returns

no information to the controlling program. The turtle, on the other

hand, does return some information (e.g. 'TOUCHLEFT') which allows one

to write programs that adapt to the turtle's environment. In the

following tables, any abbreviations are included beneath the full

operation names and the number Jf inputs (arguments) required is noted

in parentheses with the description of each operation.

160

IMSSS Logo Robot Turtle Primitives

Some operations have the same effect as for the IMLAC
(R)

graphics

Turtle (see Appendix 1.2). "*" indicates that the operation usually

was not introduced to students.

BACK

FRONT

(1-input operation) move

the distance, see FRONT)

(1-input operation) move
heading (the input value
negative input)

the turtle backward (the input value is

the turtle forward along its current
is the distance, same as BACK with a

LAMPOFF (0-input operation) turn off the turtle's headlight

LAMPON (0-input operation) turn on the turtle's headlight

LEFT (1-input operation) rotate the turtle left (counterclockwise,
the input value is the number of degrees, same as RIGHT with a
negative input)

PENDOWN (0-input operation) put the turtle's pen down so that when the
PD turtle moves, it leaves a trace

PENP * (0-input operation) return "TRUE" if the turtle's pen is
is down, "FALSE" if it is up

PENUP (0-input operation) put the turtle's "pen" up so that when the
turtle move, it leaves no trace

PLOT :1-input :peration) direct turtle commands to the robot turtle
(input = -1, see UNPLOT)

RIGHT (1-input operation) rotate the turtle right (clockwise, the
input value is the number of degrees, see LEFT)

TOOT (0-input operation) toot the turtle's horn

TOUCHBACK (0-input operation) return "TRUE" if the turtle's rear
TB sensor is touching something, otherwise return "FALSE"

TOUCHFRONT (0-input operation) as for TOUCHBACK, but for front sensor
TF

TOUCHLEFT (0-input operation) as for TOUCHBACK, but for left sensor
TL

161

TOUCHRIGHT (0-input operation) as for TOUCHBACK, but for right sensor

TR

UNPLOT (0-input operation) release the robot turtle for others to use

IMSSS Logo Music Box Primitives

The General Turtle music box is capable of producing sequences of

synthesized tones from four simultaneous voices, as described below.

NOTE (2-input operation) the first input is a sentence of pitches;
notes are buffered by the music system until the PM (play music)
command is typed; pitches are specified by a decimal number
between -28 and 32 or by a notation of the form (<octave>)<note>
(<flat>l<sharp), where:

<octave> is one of: (-2,-1,0 or <blank>,1,2)

<note> is one of: (C,D,E,F,G,A,B)

<flat> is < or -
<sharp> is 11, > or +

Notation Number Tone

%, REST -28 silence

BOOM -27 "boom" percussion sound

SH -26 "sh" percussion sound
-25 (not used)

- 2C -24 C, two octaves below middle C
- 2C# -23 C sharp or D flat, same octave

- 2D -22

- 2D# -21

- 2E -20

- 2F -19
-2F# -18

C 0 middle C

20 32 G-sharp, two octaves above middle C

NOTE's second input is a sentence of pitch durations, which tell
how long (e g. how many 1/30th seconds) to sustain or send the
corresponding note -- real-time duration thus depends on line
speed and number of voices, so a duration of 30 for 1 voice

lasts about 1 second -- equal to a duration of 7 for each of 4
voices (durations are between 1 and 127); for clear transitions

between notes, a rest takes the place of the pitch at the end of
the duration for durations >1; thus a duration of 1 sends the

pitch once, 2 sends the pitch once and one rest, and so on

162

NVOICES (1-input operation) the input is the number (between 1 and 4) of
"voices" (independent, simultaneous note sequences) desired (3
voices is not recommended, see PM); it also erases any music
already stored

PM (0-input operation) play (and then erase) music that has been
stored; voices which run out of notes (while others are still
playing) are sent rests; (NVOICES 3 uses 4 voices, the fourth
being entirely silent)

VLEN (0-input operation) returns a sentence whose length is the
number of voices; each word is the total duration for that
voice

VOICE (1-input operation) sends all subsequent notes to some voice
(the input number is between 1 and 4, default is voice 1)

2.2 Train

One of the devices controlled by IMSSS Logo is an electric train.

Here we present the relevant Logo operations followed by a description

of the train system. Any abbreviations ae included beneath the full

operation names, the number of inputs (arguments) required is noted in

parentheses with the description of each operation, and "*" denotes

operations ncc normally introduced to students

IMSSS Logo Train Primitives

BACK (1-input operation) move the train backward a specific number of
blocks (the input)

CONNECT (1-input operation) connect a sentence of three locations, i.e.
connect first and third locations by setting the switch at the
second location

FRONT (1-input operation) move the train forward a specific number of
blocks (the input)

HOME (0-input :Taxation) move train to its starting location (see
SETTRAIN)

163

SETSWITCH (2-input operation) set switch (the first input) to some
SW direction (the second input: "S" is straight, "C" is curved,

"CL" is curved left, "CR" is curved right; * "DIN" means
disable switch in current position, "ENA!" means enable
switch (first input can be "ALL"))

SETTRAIN (1-input operation) set all switches straight; find the train
(if at the terminal next to the layout), or begin a simulation
by placing it at a starting location (the input word)

SPEED (2-input operation) set the speed (second input (0,7), 0 means
no change) for a direction ("F" or "B") and return the speed

TRAINFO (1-input operation) return a sentence of information about a
location (the input word), for example "" (i.e. not a location),
'TRACK", "CROSSOVER", "SWITCH 2WAY STRAIGHT WORKING" and so on

TRMOVE * (2-input operation) move the train to a block (first input)
by the shortest route (approximately); if the second input is
nonempty, TRMOVE just returns a sentence of route locations

TROP * (3-input operation) general Sailogo operator; first input
is the Sailogo command number, second and third inputs are
parameters; returns :EMPTY: or result of operation; this is
a way new train, turtle or graphics commands may be tested

WHERE (0-input operation) return a sentence of locations; first

(last) word is the next location if the train goes forward
(backward) intermediate words describe where the train is;
track location names are of the form ("*" indicates that the
track is not clear): <track number> <zone letter> ("X" for

crossovers); for example: 1F,2E,2EX are clear, *1F is a
working disconnected switch, **1F is a nonworking disconnected
switch, and *** is an end of track

WHERETO (2-input operation) return a sentence of blocks accessible from
given block (second input) in a direction away from the block

named by the first input

WHISTLE (0-input operation) train whistles (terminal bell rings)

The IMSSS train system differs from the basic Marklin
(R)

system in

the following way: although the center rail is used for power, only one

running rail is used for a ground return; the other rail is cut on

block boundaries and is shorted to ground only when rolling stock with

uninsulated axles enters a block. The interface signals that something

164

entered or left block "xy", thus leaving to the program (Sailogo) the

task of inferring what is that something. Supplying power to the

engine via the center rail precludes independent control of a second

engine unless a catenary or carriercontrol system were added. A

catenary would, of course, make the layout even more difficult to

change. The interface's design allows for two trains (one via

catenary), but this has not been exploited. Obtaining marginally

reliable performance of one train is troublesome enough. For instance,

speed control is rough and unpredictable. Sailogo can command eight

different speeds, but only the highest causes movement, and even that

slackens on curves. The interface also allows for coupling and

uncoupling, but the physical problems involved have not been surmounted.

Experiments in manually adding cars to the train indicate that excessive

noise is induced in block sensing. Design of a reliable layout and

control system requires imagination, experience in both electronics azd

*
model railroading, and plenty of time. We feel that an initial

simulation of train and layout would have led to better results.

Within Sailogo, knowledge about the track layout is incorporated in

a linked list of track blocks (sections). Switches are blocks with

added information about accessible, adjacent blocks. In setting a

switch, the program checks that the switch is not occupied, replaces

block links in the data structure, remembers the position of the switch

(there is no hardware feedback on switch settings so all are initialized

* We thank David Serres of Seattle for consulting with us on potentially

reliable train designs

165

to be straight), and sends the appropriate ASCII character to throw the

switch.

When moving the train, the next block (forward or backward) cannot

be a track end, be a disconnected switch, or be occupied. ASCII

characters combining the train's direction and speed are sent to the

train interface. To determine if the train is properly moving when

feedback information is faulty (which can happen when track connections

are dirty or loose), the program monitors a "window" of blocks,

hopefully containing the train, its previous block and the next two

blocks in its direction of motion. A transition matrix defines which

of sixteen combinations of feedback information are stable, noisy, or

erroneous (e.g. "0100" is a stable configuration where the previous

block is unoccupied (0), the current block is occupied (1), and the

next two blocks are unoccupied). For example, if the train enters a

block not in the window, a faulty switch may be the cause (the program

could, but does not, incorporate this knowledge into its world view);

if the train skips a block (e.g. 0001), a track sensor may have failed

and this fact is reported; when the train does not change state within

a few seconds, a blcwn circuit-breaker or broken connection may be the

culprit; and so on In this way, Sailogo attempts to ignore noise and

classify and compensate for errors where possible.

If we could have added multiple trains (either physically or in

a simulation), there remain problems with the Tenex control structure in

allowing sepatare users to share a device and/or a changing, program

data-base. As one solution, we added multiple Logo users as subsidiary

166

I

Tenex forks to one train job, which then acted as an executive to allow

train commands to be executed in a shared environment. This approach

was frustrated because Logo lost the ability to handle pseudo-interrupts

unless they were generated by the additional terminals (in the current

version of Tenex (1.31) at IMSSS, there may be but one controlling

terminal per job).

Appendix 3: Details Pertinent to the Preliminary Test

This appendix contains a discussion of how one commercial designer

of an aptitude test for computer programming ability attempted to assess

the validity of that test. The test was examined in the process of

designing our own test -- a sampling of which appears in Appendix 3.2.

3.1 An Example of Commercial Evaluation

The example derives from remarks in the published manual for one of

the tests we investigated, The validity of that test was assessed by

three studies: (1) correlation of test scores and grades of three

groups of programming trainees, (2) correlation of test scores and

overall performance ratings by supervisors of programmers, and (3) a

study like that of (2) in which grades on a training course were also

available. Studies (1) and (3) both assumed, without discussion, that

the testing done during training was itself a valid measure of

programming ability. Studies (2) and (3) both assumed that ratings by

superiors was similarly valid. Study (1) indicated that, of fifteen

relevant correlations between subtest scores and trainee groups, eight

167

were of statistical significance. And only one subtest was

significantly correlated with trainee performance over all groups, in

spite of the fact that the overall test/training correlation for each

group was significant. Interestingly, the most variable subtests were

those which relied heavily on time and repetition. In Study (2), three

of five subtest correlations and the overall correlation were

significant but small; and the two remaining subtests were those which

exhibited variable or minimal correlation with performance in study (1).

Unfortunately, the ratings used as the validating measure in (2) were

not confined to programming ability and included such things as

attitudes. Therefore, study (2) is invalid. Study (3) found three

subtests significantly correlated with training course grades, but one

of the three had not been significantly correlated with grades for any

group in study (1). Furthermore, the ratings used in the other half of

study (3) were virtually uncorrelated with subtest results, The

brochure went on to state that these ratings and job tenure were

correlated more strongly than anything else in both halves of the study

-- the suggestion being that low correlations must be expected when

evaluations ph -a. high value on relatively invalid properties (i.e.

tenure). An alternative observation can be made which applies to any

correlational pr..cedure: the sample variance of a measured property may

be so low that apparent but spurious correlations with another measure

arise, In study (3), the test scores could have had low variability

for good reason: the testees could have been of very nearly the same

competence, In any event, none of the studies provided a clear

validation cf this particular test for programming aptitude.

168

h
e
r
e

a
r
e

s
o
m
e

b
o
x
e
s

w
i
t
h

n
u
m
b
e
r
s

i
n

t
h
e
m
.

t
e
c
h

b
o
x

a
l
s
o

h
a
s

a

p
e
r
m
a
n
e
n
t

b
o
r
e
'
s

a

d
i
a
g
r
a
m

t
h
a
t

s
h
o
w
s

h
o
w

o
u
r

c
a
n
d
y

m
a
c
h
i
n
e

w
o
r
k
s
,

p
l
e
a
.

s
t
a
r
t

a
t

n
a
m
e

o
f

I
t
s

o
w
n
,

w
h
i
c
h

i
s

a
l
s
o

a

n
u
m
b
e
r
.

t
h
e

t
o
p
,

f
o
l
l
o
w

t
h
e

a
r
r
o
w
s

a
n
d

f
i
l
l

i
n

e
a
c
h

b
l
a
n
k

w
i
t
h

w
h
a
t

y
o
u

t
h
i
n
k

t
h
e

1
2

3
4

5
6

7
8

9
1
0

1
6
1
3
1
9
1
2
1
1
1
1

21
91

14
81

66
1

I
I

I
m
a
g
i
n
e

t
h
a
t

y
o
u

a
r
e

a

r
o
b
o
t

t
h
a
t

c
a
n

r
e
a
d

a
n
d

w
r
i
t
e
.

P
l
e
a
s
e

o
b
e
y

t
h
e
s
e

c
o
m
m
a
n
d
s

(
n
o
t
e
,

w
h
e
n

y
O
u

w
r
i
t
e

i
n

a

b
o
x
,

y
o
u

r
e
p
l
a
c
e

w
h
a
t

i
t

h
e
l
d

b
e
f
o
r
e
)
:

1
.

a
d
d

t
h
e

n
u
m
b
e
r

i
n

b
o
x

4

t
o

t
h
e

n
u
m
b
e
r

i
n

b
o
x

2

a
n
d

w
r
i
t
e

t
h
e

s
u
m

i
n

b
o
x

7
.

2
.

a
d
d

t
h
e

n
u
m
b
e
r

i
n

b
o
x

7

t
o

t
h
e

n
u
m
b
e
r

f
o
u
n
d

i
n

t
h
e

b
o
x

w
h
o
s
e

b
o
x

n
u
m
b
e
r

i
s

i
n

b
o
x

a
n
d

w
r
i
t
,

t
h
e

s
u
m

i
n

b
o
x

6
.

3
.

m
u
l
t
i
p
l
y

t
h
e

n
u
m
b
e
r

i
n

b
o
x

6

b
y

t
h
e

n
u
m
b
e
r

i
n

b
o
x

I

a
n
d

w

'
e

t
h
e

p
r
o
d
u
c
t

i
n

b
o
x

S
.

4
.

s
t
o
p

b
e
i
n
g

a

r
o
b
o
t
.

w
h
a
t

n
u
m
b
e
r

i
s

n
o
w

i
n

b
o
x

5
?

s
a
c
h
l
n
e

s
h
o
u
l
d

d
o

a
t

t
h
a
t

p
o
i
n
t
:

I
s

i
t

a

d
i
m
e
?

y
e
s

n
o

y
e
s

a
m

I

e
m
p
t
y
?

n
o

y
e
s

I
f

a
c
c
e
p
t

a

c
o
i
n

i
s

i
t

a

n
i
c
k
e
l
?

a
d
d

$
.
1
0

t
o

t
o
t
a
l

J
e

I
s

t
o
t
a
l

4
.
1
0
?

y
e
s

w
a
s

t
h
e

D
E
N
T
I
N
E

?
k
n
o
b

p
u
l
l
e
d
?

y
e
s

n
o

d
e
l
i
v
e
r

=
M
I
N
X

n
o

r
e
t
u
r
n

l
a
s
t

c
o
i
n

n
o

t
o
t
a
l

$
.
1
5
?

y
e
s

n
o

w
a
s

t
h
e

J
U
J
U
S

w
a
s

t
h
e

M
I
A
s

k
n
o
b

p
u
l
l
e
d
?

7

k
n
o
b

p
u
l
l
e
d
?

y
e
s

n
o

y
e
s

n
o

1
1
(

p
u
t

m
o
n
e
y

i
n

c
o
i
n

b
o
x

a
n
d

s
e
t

t
o
t
a
l

t
o

$
.
0
0

IN I
r
o

I
g

l
D

I
H
3

1
6
)

1
7
J

c
D F
J

C
Dt
i

1
-
3

l
D

t
r
y

t
o

:

i
t

a
n

f
e
n
n
y

4
-

l
e
t
t
e
r

w
o
r
d
s

a
n

y
o
u

c
a
n

f
r
o
m

t
h
e

l
e
t
t
e
r
s
:

B
A
R
G

i
f

y
o
u

a
s
k

f
o
r

c
h
a
n
c
e

o
f

t
h
r
e
e

S
i

b
i
l
l
s

I
n

d
i
m
e
s

a
n
d

n
i
c
k
e
l
s

a
n
d

y
o
u

g
e
t

t
w
i
c
e

a
s

m
a
n
y

n
i
c
k
e
l
s

a
s

d
i
m
e
s
,

h
o
w

m
a
n
y

n
i
c
k
e
l
s

w
i
l
l

y
o
u

h
a
y
s
?

u
s
i
n
g

y
o
u

k
n
o
w
l
e
d
g
e

o
f

t
h
e

a
l
p
h
a
b
e
t
,

w
h
a
t

d
o

y
o
u

t
h
i
n
k

t
h
e

n
e
x
t

t
w
o

l
e
t
t
e
r
s

i
n

t
h
i
s

s
e
q
u
e
n
c
e

s
h
o
u
l
d

b
e
?

g
h
g
f
g
h
g

h
e
r
e

a
m

t
h
e

d
e
f
i
n
i
t
i
o
n
g

o
f

s
o
m
e

O
r
d
i
n
a
r
y

m
a
t
h
e
m
a
t
i
c
a
l

s
y
m
b
o
l
s

w
h
i
c
h

y
o
u

W
V
/

h
i
v
e

s
e
e
n

b
e
f
o
r
e
:

s
y
m
b
o
l

m
e
a
n
i
n
g

i
s

g
r
e
a
t
e
r

t
h
a
n

i
s

l
e
s
s

t
h
a
n

i
s

e
q
u
a
l

t
o

4
i
s

n
o
t

e
q
u
a
l

t
o

i
s

n
o
t

g
r
e
a
t
e
r

t
h
a
n

i
s

n
o
t

l
e
s
s

t
h
a
n

I
F

.

T
H
E
N

.
.

i
f

w
e

k
n
o
w

.

i
s

t
r
u
e

t
h
e
n

.
.

i
s

a
l
s
o

t
r
u
e

i
m
a
g
i
n
e

t
h
a
t

y
o
u

c
a
n

r
o
t
a
t
e

t
h
e

c
u
b
e

o
n

t
h
e

l
e
f
t

a
s

m
u
c
h

a
s

y
o
u

l
i
k
e
.

s
o

3

<

4

i
s

a

t
r
u
e

s
t
a
t
e
m
e
n
t

a
b
o
u
t

t
h
e

n
u
m
b
e
r
s

3

a
n
d

4
,

b
u
t

X

<

Y

W
h
i
c
h

o
n
e

c
u
b
e

o
n

t
h
e

r
i
g
h
t

i
s

p
r
o
b
a
b
l
y

t
h
e

s
a
m
e

a
s

t
h
e

c
u
b
e

o
n

t
h
e

l
e
f
t
?

m
a
y

b
e

t
r
u
e

o
r

f
a
l
s
e

d
e
p
e
n
d
i
n
g

u
p
o
n

w
h
a
t

n
u
m
b
e
r
s

a
r
e

p
u
t

i
n

p
l
a
c
e

o
f

X

O
a
n
d

Y
.

b
u
t

I
F

X

>

i

T
H
E
N

0

<

X

i
s

a

t
r
u
e

s
t
a
t
e
m
e
n
t

f
o
r

a
n
y

:
l
e
s
s
e
r

X
.

p
l
e
a
s
e

f
i
t

i
n

t
h
e

b
l
a
n
k
s

t
o

m
a
k
e

a

r
e
a
s
o
n
a
b
l
e

s
e
n
t
e
n
c
e
:

i
n

t
o

e
v
e
n
i
n
g

a
s

b
r
e
n
k
f
r
s
t

i
s

t
o

t
h
a
t

i
s

t
h
e

o
n
e

s
i
m
p
l
e

r
u
l
e

w
h
i
c
h

a
l
l
o
w
s

e
a
c
h

l
e
f
t
h
a
n
d

w
o
r
d

t
o

b
e

c
h
a
n
g
e
d

i
n
t
o

e
a
c
h

r
i
g
h
t
h
a
n
d

w
o
r
d
?

C
A
L
E
N
D
A
R

L
A
C
E
S
D
A
R

S
U
M
:
l
E
R

B
U
S
H
E
R

T
R
E
E

E
R
T
E

i
n

e
a
c
h

o
f

t
h
e

m
a
t
h
e
m
a
t
i
c
a
l

s
t
a
t
e
m
e
n
t
s

b
e
l
o
w
,

A
,

S

a
n
d

C

s
t
a
n
d

f
o
r

a
n
y

n
u
m
b
e
r
"
.

f
o
i

e
a
c
h

s
t
a
t
e
m
e
n
t
,

p
l
e
a
s
e

s
a
y

w
h
e
t
h
e
r

y
o
u

t
h
i
n
k

i
t

I
s
:

A
L
W
h
i
S

T
R
U
E
,

A
L
W
A
Y
S

F
A
L
S
E
,

s
t
a
t
e
m
e
n
t
s
:

o
r

S
O
M
E
T
I
M
E
S

T
R
U
E

O
R

F
A
L
S
E
.

.
I
P

A
>

B
>

C

T
H
E
N

A

a

C

I
P

A
=

B

C
T
H
E
N

A

1

C

I
F

A

n

B

4

C

T
H
E
N

A

4

C

I
F

A

4

B

#
C

T
H
E
N

A

4

C

I
F
A
t
S
4
C

T
H
E
N
A
i
C

I
l
a
s
k
i
n

t
h
e

r
o
b
b
e
r

b
r
o
k
e

i
n
t
o

a
n

i
c
.

c
r
e
a
m

f
a
c
t
o
r
y

a
n
d

l
i
f
t
e
d

a

f
o
u
r

-
f
o
o
t

f
i
g
u
r
e

A

w
s
s

c
h
a
n
g
e
d

i
n
t
o

f
i
g
u
r
e

3

b
y

a

s
i
m
p
l
e

r
u
l
e
,

p
l
e
a
s
e

d
r
a
w

f
i
g
u
r
e

D

c
u
b
*

o
f

v
a
n
i
l
l
a

i
c
e

C
r
.
.
,
.
,

b
u
t

w
e
,

s
u
r
p
r
i
s
e
d

b
y

t
h
e

p
o
l
i
c
e

i
n

h
e
r

e
s
c
a
p
e

s
o

t
h
a
t

i
t

c
o
r
r
e
s
p
o
n
d
s

t
o

f
i
g
u
r
e

C

c
h
a
n
g
.
d

b
y

t
h
e

s
a
m
e

r
u
l
e
:

a
n
d

f
e
l
l

w
i
t
h

t
h
e

c
u
b
e

i
n
t
o

a

v
a
t

o
f

c
h
o
c
o
l
a
t
e

s
y
r
u
p
.

T
h
e

p
o
l
i
c
e

t
o
o
k

t
h
e

i
c
e

c
r
e
a
m

f
o
r

e
v
i
d
e
n
c
e

b
u
t

c
o
u
l
d
n
'
t

c
a
r
r
y

i
t

d
o
w
n

t
o

t
h
e

s
t
a
t
i
o
n

i
n

o
n
e

p
i
e
c
e
,

s
o

t
h
e
y

c
u
t

i
t

i
n
t
o

o
n
e
-
f
o
o
t

c
u
b
e
s
,

p
e
c
k
e
d

i
n

d
r
y

i
c
e

t
o

p
i
-
1
~
s
t

m
e
l
t
i
n
g
.

g
A

b
o
w

m
a
n
y

o
n
e
-
f
o
o
t

c
u
b
e
s

o
f

i
c
e

c
r
e
a
m

b
a
d

n
o

c
h
o
c
o
l
a
t
e

o
n

t
h
e
m
?

h
e
r
e

i
s

A

s
e
l
o
.
n
r
e

o
f

f
o
u
r

.
g
u
r
e
s
,

t
h
e
y

c
h
a
n
g
e

f
r
o
m

l
e
f
t

t
o

r
i
g
h
t

a
c
c
o
r
d
i
n
g

t
o

a

s
i
n
p
l
e

r
u
l
e
,

t
r
y

t
o

d
i
s
c
o
v
e
r

i
t

a
n
d

d
r
a
w

t
h
e

n
e
x
t

f
i
g
u
r
e

i
n

t
h
e

s
e
q
u
e
n
c
e
: o 0

o 0

1

0
0

-
,
3

O
l
e
a
s
s

w
r
i
t
e
,

i
n

a

f
e
w

w
o
r
d
s
,

w
h
a
t

y
o
u

t
h
i
n
k

t
h
e

r
u
l
e

i
s

h
e
r
e

i
s

a
n

A
4
d
i
t
i
e
n

p
r
o
b
l
e
m

i
n

a
r
i
t
h
m
e
t
i
c
:

A

A

B
-
-
-
-
-
-

C

R

C

A
,

3

a
n
d

C

a
r
e

t
h
r
e
e

d
i
f
f
e
r
e
n
t

d
i
g
i
t
s

b
e
t
w
e
e
n

0

a
n
d

9
.
.

A
.

.

C

t
h
e

f
i
g
u
r
e
s

i
n

g
r
o
u
p

I

h
a
v
e

s
o
m
e
t
h
i
n
g

i
n

c
o
m
m
o
n

t
h
a
t

i
s

n
o
t
s
h
a
r
e
d

b
y

a
n
y

o
f

t
h
e

f
i
g
u
r
e
s

i
n

g
r
o
u
p

2
.

c
i
r
c
l
e

t
h
e

f
i
g
u
r
e

i
n

g
r
o
u
p

3

t
h
a
t

b
e
l
o
n
g
s

i
n

g
r
o
u
p

I

b
u
t

n
o
t

i
n

g
r
o
u
p

2
.

g
r
o
u
p

I

g
r
o
u
p

2

g
r
o
u
p

3

-(
f)

(p
$

a)
8-

co
8t

to
sc

u-
8

d
e
s
c
r
i
b
e

t
h
e

d
i
f
f
e
r
e
n
c
e

b
e
t
w
e
e
n

f
i
g
u
r
e
s

i
n

g
r
o
u
p

1

a
n
d

g
r
o
u
p

2
.

w
h
a
t

i
s

t
h
e

r
u
l
e

i
n

w
o
r
d
s
?

w
h
a
t

o
n
e

s
i
m
p
l
e

r
u
l
e
,

n
o
t

u
s
i
n
g

a
r
i
t
h
m
e
t
i
c
,

w
a
s

u
s
e
d

t
o

w
a
k
e

t
h
e

d
i
g
i
t
s

o
n

t
h
e

r
i
g
h
t

f
r
o
m

t
h
e

s
t
r
i
n
g
s

o
f

d
i
g
i
t
s

o
n

t
h
e

l
e
f
t
?

9
9
9
9
9
9
9
9
9

9

5
5
6

5

6
1
0
6

w
h
i
c
h

o
f

t
h
e

b
o
x
e
s

o
n

t
h
e

r
i
g
h
t

c
o
u
l
d

h
a
v
e

b
e
e
n

m
a
d
e

w
i
t
h

p
a
t
t
e
r
n
s

l
i
k
e

t
h
a
t

o
n

t
h
e

l
e
f
t
:

I
f

.

a
>

1
.
.
.
-
n
s

"
r
e
p
l
a
c
e

.

w
i
t
h

.
.

"
,

w
e

c
a
n

c
h
a
n
g
e

t
h
e

w
o
r
d

F
O
G

i
n
t
o

t
h
e

w
o
r
d

D
O
G

b
y

u
s
i
n
g

t
h
e
s
e

r
u
l
e
s

o
n

r
o
c

1

F

.
>

D

O
G
.
.
>

O
G

p
l
e
a
s
e

t
r
y

t
o

m
a
k
e

u
p

s
o
m
e

r
u
l
e
s

o
f

y
o
u
r

o
w
n

w
h
i
c
h

c
a
n

c
h
a
n
g
e

S
U
M
M
E
R

i
n
t
o

W
I
N
T
E
R

g

erpiix 4: Sample Logo Curriculum

This appendix contains portions of the Logo curriculum developed

for the experiment discussed tr this report. Many of the excerpts

shown here are referenced by discussions in the text, particularly in

Sections 4.1 and 6.1. The following table indexes the curriculum by

part number, curriculum page, and page of this appendix. Pages denoted

with "T" were designed for use by turtle-graphics students. The text

is copyrighted, but may be used for noncommercial purposes.

Part Curriculum Page Page

1 1,4 173

2 8 174

3 15,17T,17.2T 174-175

4 18,21,22 176-177

5 26-30 177-179

6 34,40-42,44T 180-182

7 46,47,50,54,54T 182-184

8 55,59,61,63 185-186

9 65,66,68,70,72,74,75 187-190

10 76-78,79T,80T,81,82,84,85 190-194

172

S' D

4

A
l
l

t
h
e

t
h
i
n
g
s

a
b
o
v
e

c
a
n

b
e

d
o
n
e

b
y

w
e

h
u
m
a
n
s

a
n
d

w
e

c
a
n

s
h
o
w

a
n
o
t
h
e
r

h
u
m
a
n

h
o
w

t
o

d
o

t
h
e
m
,

s
o

w
e

c
a
n
,

b
y

C
h
u
r
c
h
'
s

t
h
e
s
i
s
,

t
e
l
l

a

c
o
m
p
u
t
e
r

h
o
w

t
o

d
o

t
h
e
m
.

f
o
r

u
s
t

1
.
1

H
e
r
e

a
r
e

s
o
m
e

o
t
h
e
r

t
h
i
n
g
s

w
e

c
a
n

h
a
v
e

c
o
m
p
u
t
e
r
s

d
o

P
L
A
Y

G
A
M
E
S

I

A
M

T
H
I
N
K
I
N
G

O
F

S
O
M
E
T
H
I
N
G

T
H
A
T

Y
O
U

C
O
U
L
D

B
E
.

T
H
E

W
O
R
D

H
A
S

6

L
E
T
T
E
R
S
.

G
U
E
S
S

A

L
E
T
T
E
R
:

1!
1. 11

7-
0

f..
1

P
l
e
a
s
e

w
r
i
t
e

'
b
a
n

t
h
e

n
a
m
e
s

o
f

a

f
e
w

t
o
o
l
a
t

P
a
r
t

C
o
m
p
u
t
e
r
s

a
r
e

m
a
c
h
i
n
e
s

i
n
v
e
n
t
e
d

b
y

p
e
o
p
l
e

t
o

h
e
l
p

p
e
o
p
l
e
.

A

c
o
m
p
u
t
e
r

i
s

3

t
o
o
l

w
h
i
c
h

a
n
y
o
n
e

c
a
n

l
e
a
r
n

t
o

u
s
e

i
n

a
n
y

w
a
y

h
e

o
r

s
h
e

l
i
k
e
s
.

C
h
a
r
l
i
e
!

W
h
e
r
e

d
o

y
o
u

w
a
n
t

t
h
e

c
o
m
p
u
t
e
r
?

A
n

o
r
d
i
n
a
r
y

c
o
m
p
u
t
e
r

i
s

s
o

u
s
e
f
u
l

t
h
a
t
,

a
s

f
a
r

a
s

a
n
y
o
n
e

k
n
o
w
s
,

i
t

c
a
n

b
e

u
s
e
d

t
o

s
o
l
v
e

a
n
y

p
r
o
b
l
e
m

o
r

p
u
z
z
l
e

t
h
a
t

a
n
y

h
u
m
a
n

c
a
n

s
o
l
v
e
.

T
h
i
s

s
t
r
o
n
g

s
t
a
t
e
m
e
n
t

m
e
a
n
s

t
h
a
t

c
o
m
p
u
t
e
r
s

a
r
e

t
h
e

m
o
s
t

g
e
n
e
r
a
l

t
o
o
l

p
e
o
p
l
e

h
a
v
e

y
e
t

i
n
v
e
n
t
e
d
.

D
o

y
o
u

k
n
o
w

w
h
a
t

a

T
O
O
L

i
s
?

(
p
l
e
a
s
e

f
o
l
l
o
w

t
h
e

a
r
r
o
w

f
r
o
m

y
o
u
r

a
n
s
w
e
r
)

Y
E
S

N
O

A

h
a
m
m
e
r

i
s

a

t
o
o
l
.

S
o

a
r
e

r
a
c
i
n
g

c
a
r
s
,

b
o
o
k
s
,

t
r
u
m
p
e
t
s
,

a
n
d

e
v
e
n

t
o
o
t
h
b
r
u
s
h
e
s
.

A

T
O
O
L

i
s

a
n
y
t
h
i
n
i

u
s
e
d

t
o

p
e
r
f
o
r
m

s
o
m
e

o
p
e
r
a
t
i
o
n

o
r

a
c
h
i
e
v
e

s
o
m
e

r
e
s
u
l
t
,

f
o
r

w
o
r
k

o
r

p
l
e
a
s
u
r
e
'
.

r

r
?
.
:
.

1
5
L
T

S
L
T

J
O
N
h
6
5
6

a
n
d

1
2
3
A
8
C

a
l
s
o

c
o
n
t
a
i
n

c
h
a
r
a
c
t
e
r
s

l
i
t
e

a
r
a

l
e
t
t
e
r
s

o
f

t
h
e

h
o
w

t
h
a
t

y
o
u

r
a
v
e

L
o
g
o
'
s

a
t
t
e
n
t
i
o
n
,

t
y
p
e

s
o
m
e

s
e
n
t
e
n
c
e
,

a
l
p
h
a
b
e
t

w
h
i
c
h

a
r
e
n
'
t

n
u
m
b
e
r
s

a
n
d

m
u
s
t

b
e

q
u
o
t
e
d

i
f

w
e

w
e
n
t

t
h
e
m

t
o

a
n
y
t
h
i
n
g

y
o
u

p
l
e
a
s
e
,

k
i
t
e

r
o
p
e

t
h
a
n

0
.
e

w
o
r
t

i
n

i
t
.

w
h
a
t

d
i
d

y
o
u

b
e

l
i
t
e
r
a
l
s
.

t
r
o
t
:

h
o
w

t
e
l
l

L
o
g
o

t
h
a
t

y
o
u

a
r
e

f
i
n
i
s
h
e
d

w
i
t
h

t
h
e

s
e
n
t
e
n
c
e

b
y

t
Y
P
i
n
g

t
h
e

"
M
A
R
Y

i
s

n
o
t

l
i
t
e
r
a
l

(
o
r

a
n
y
t
h
i
n
g

e
l
s
e

i
n

t
h
e

L
o
g
e

l
e
r
s
u
s
g
e

b
e
c
a
u
s
e

R
E
T
0
h

s
t
y

(
C
R

o
n

a
n

I
n
l
a
c
)
.

L
o
g
o

w
i
l
l

o
r
o
b
a
o
l
y

r
e
p
l
y

f
t

i
s

n
f
a
s
i
n
g

t
h
e

r
i
g
h
t

q
u
o
t
a

*
a
r
k
.

Y
e
u

c
a
n

t
e
l
l

L
o
g
o

t
o

P
R
I
N
T

a

V
O
W
*

o
n

y
o
u
r

t
e
l
s
t
y
e
e
o
r

I
m
l
e
o
l

P
A
I
N
T

"
M
Y

N
A
M
E

I
S
'

P

*
A

S
M
O
R
T

S
E
N
T
E
N
C
E
*

P

1
2
3
0
5
4
1
8
0

P

1
1
.
0
0
0
W
O
R
D
S
O
O
N
G
M
A
V
E
S
P
A
G
E
S
0

(
L
o
g
o

u
n
d
e
r
s
t
a
n
d
s

P

t
o

m
e
a
n

P
R
I
N
T
.

t
h
i
s

i
s

g
e
l
l
e
d

a
n

*
a
b
b
r
e
v
i
a
t
i
o
n
'
.
)

h
J

.
7
3
-
-

S
I

T
r
y

t
h
e

f
o
l
l
o
w
i
n
g

t
o

f
i
n
d

o
u
t

w
h
a
t

L
o
g
o

d
o
e
s

(
r
e
m
e
m
b
e
r

t
o

a
n
d

*
s
o
h

d

w
i
t
h

t
h
e

R
E
T
U
R
N

k
e
y
)
.

f
o

cX
co C

fl

P
R
I
N
T

/
0
0

P

X
Y
Z

P

*
T
I
M
E
*

P
R
I
N
T

P

"
X
Y
Z
'

P

'
X
Y
Z
'

"
X
Y
Z
'

P

T
I
M
E

P

*
1
0
0
*

(
1
5
'

M
a
k
e

u
p

s
e
m
.

l
i
t
e
r
a
l
s

a
n
d

c
o
m
m
a
n
d

L
o
g
.

t

P
R
I
N
T

t
h
a
n
,

e
4

T
w
o
s
/

N
E
E
D
S

A

n
E
e
N
.
I
N
X
*
.

h
e
a
t

d
i
d

i
t

r
e
p
l
y
?

w
r
a
p

w
o
r
d

i
n

t
h
e

s
e
n
t
e
n
c
e

y
o
u

t
y
p
e
d

d
f
a

L
o
g
o

m
e
m
t
i
o
n

i
n

i
t
s

r
e
p
l
y

t
o

y
o
u
?

T
r
y

s
o
m
e

o
t
h
e
r

s
e
n
t
e
n
c
e
s

(
w
e

w
i
l
l

c
a
l
l

t
h
a
n

"
l
i
n
e
s

"
)
.

! 1-
..7

:::
14

,',
37

..-
:1

.

H
i,

f7
,-

, e
el

p
l
y

A
..!

.f
.'5

 H
A

C
K

3'
4

r-
-,

ha
l

g'
cp

c:
ar

ow
A

fA
or ,

...
..

..-
,

n
y

A
-.

 c
...

,
r

...
--

k
I

T
eo

n
, , X

j,1
;')

e4
S)

e
z
Z
A
"

I

T
H
U
1

t
'

1
.
7
o

t
.

LI
K

E
. "

w
e

P.
1,

,-
11

2
II

's
.

.4
7

4*
 c

k.
...

.-
. 1

.1
77

:.e
 a

w
".

.n
-A

%
A

 A
 C

i A
fA

C
e%

e
...

ni
g

A
N

 C
V

O
: 7

Z
W

itA
ta

m
en

v
I

.1
.:;

??
is

t?

-,
.-

11
77

.4
-C

.-
71

;:-
:7

%
-

T
r
'
4
7
"

"
.
e
i
r
o
,

.t.
 "

I R
e-

S
...

7.
:7

; .
0.

..^
.r

 'A
I

tr
 V

.Z
4V

-
6-

6.
. 1

-
."

.f
.u

pe
r.

":
4.

c
x

,
/6

.1
r
.
el

",
 If

 C
.'s

' /
T

Y
io

oz
iN

gv
 iv

.tu
 N

4(
24

: 5
0

T
O

 ,r
7'

 r
ite

 N
Z

":
 e

yr
 A

K
."

?
5R

.:5
'

. .
-.

.
...

..-
-

a

t
Z
i
-
2

r4
re

 Y
ea

C
O

I"
 F

Z
'O

t
.4

 5
4A

/7 ,
A

cr
_I

m
s

c,
 w

an
So

.y
./

1
1

c-
--

)
1 .t,

.

-
.
.
.
.
,

:
.

.

:
k

-
.
-
-
,

-
-

-
:

-
.
.
.

r
e
f

A
l
t
h
o
u
g
h

L
o
g
o

a
i
d

n
o
t

u
n
d
e
r
s
t
a
n
d

t
h
e

E
n
g
l
i
s
h

w
o
r
d
s

y
o
u

t
Y
s
s
o
f

d
o

y
o
u

t
h
i
n
s

i
t
'
s

S
t
r
e
.
0
0

t
h
a
t

L
o
g
o

a
n
s
w
e
r
e
d

i
n

E
n
g
l
i
s
h
?

L
o
g
o

o
n
l
y

u
n
d
e
r
s
t
a
n
d
s

C
e
r
t
a
i
n

E
n
g
l
i
s
h

w
o
r
d
s

a
n
d

e
x
p
e
c
t
s

t
h
e
m

t
o

b
e

a
r
r
a
n
g
e
d

i
n

c
e
r
t
a
i
n

o
r
d
e
r
s
.

F
o
r

e
x
a
m
p
l
e
.

t
y
p
e

B
E
L
L

f
o
l
l
o
w
e
d

b
y

t
h
e

R
E
T
U
R
N

k
e
y
,

I
n

a

l
i
t
t
l
e

w
h
i
l
e

y
o
u

w
i
l
l

f
i
n
d

o
u
t

w
h
i
c
h

w
o
r
d
s

L
o
g
o

U
n
d
e
r
s
t
a
n
d
s

a
l
r
e
a
d
y

a
n
d

h
o
w

y
o
u

c
a
n

m
u
s
e

L
o
g
o

u
n
d
e
r
s
t
a
n
d

o
t
h
e
r

w
o
r
d
s
.

P
R
I
N
T

'
A

V
E
R
Y

V
E
R
Y

V
E
R
Y

L
O
N
G

S
E
N
T
E
N
C
E
*

w
h
e
n
e
v
e
r

y
o
u

t
Y
c
l
e

s
e
m
i
c
o
l
o
n

*
I
*
,

L
o
g
o

i
g
n
o
r
e
s

e
v
e
r
v
t
h
i
n
g

y
e
t
i

t
y
p
e

a
f
t
e
r

t
h
a
t

o
n

t
n
e

l
i
n
e
.

t
h
a
n

b
y

t
y
p
i
n
g

c
o
n
t
r
o
l

g
e
n
t
e
e
l

C
o
n
t
r
o
l

C
o
n
t
r
o
l

c
e
n
t
r
a
l

c
o
n
t
r
o
l

t
h
e

c
o
n
t
r
o
l

k
e
y
s
/

N
N

N
N

$
E

/
I

D
A
R
E

Y
O
U

T
O

A
N
S
W
E
R

M
E
.

L
O
G
0
1
1
1
1

w
L
e
g
s

w
i
l
l

t
y
p
e

f
o
r

y
e
t
i
'

P
R
I
N
T

e
A

V
E
R
Y

V
E
R
Y

L
O
N
G

S
E
N
T
E
N
C
E
*

1
7
.
2
T

I
T
T

W
h
e
t

d
o

y
o
u

t
h
i
n
k

t
h
e

R
I
P
E

s
o
m
n
n
d

d
o
e
s

t
o

a

M
a
t
u
r
e
?

T
r
y

i
t
,

2
4

y
o
u
r

/
e
l
s
e

t
e
r
m
i
n
a
l

d
o
.
-

n
o
t

s
a
y

G
R
A
P
H
I
C
S

i
n

t
h
e

l
o
w
e
r

l
e
f
t

c

0
0
0
0
0

a
s
k

t
u
t
o
r

f
o
r

W
e
i
.

S
o
s
i
d
e
n

P
R
I
N
T
I
n
g

t
h
i
n
g
s

e
n

p
e
r
t

f

t
h
e

q

I

C
o
n
t
r
o
l
X

d
o
e
s

t
o

a

s
e
n
t
e
n
c
e

w
h
a
t

o
e
e
s

t
o

p
i
c
t
u
r
e
,

D
o
l
e
d

s
c
r
e
e
n

(
t
h
i
s

i
s

c
e
l
l
e
d

t
h
e

'
t
y
p
e
w
r
i
t
e
r
'

P
e
r
t
)
.

y
o
u

c
o
n

c
e
r
n
a
n
d

d
o
s
e

t
o

w
o
r
d

w
h
a
t

Z
A
P

R
e
e
s

t
o

t
h
e

l
a
s
t

l
i
n
e

d
r
a
w
n
.

t
h
e

0
0
0

'
t
u
r
t
l
e
'

t
o

r
o
v
e

a
r
o
u
n
d

t
h
e

s
c
r
e
e
n

a
n
d

d
r
a
w

p
i
c
t
u
r
e
s
.

T
h
e

t
u
r
t
l
e

c
a
n

P
O
K
E

i
t
s

h
e
a
d

o
u
t

a
n
d

e
l
s
e

U
N
P
O
K
E

i
t

(
p
u
l
l

i
t

i
n
)
.

I
s

t
h
i
s

0
I
f

t
h
e

t
u
r
t
l
e

a
l
w
a
y
s

r
o
v
e
s

w
i
t
h

i
t
s

P
E
N
U
F
,

w
i
l
l

y
o
u

e
v
e
r

s
e
e

a

p
i
c
t
u
r
e
?

l
i
k
e

r
e
s
1

t
u
r
t
l
e
?

T
h
i
s

i
s

w
h
a
t

t
h
e

t
u
r
t
l
e

M
i
g
h
t

l
e
e
k

l
i
k
e

Y
o
u

r
a
y

b
e

g
e
t
t
i
n
g

t
i
r
e
d

o
f

m
o
v
i
n
g

a
n
d

d
r
a
w
i
n
g

w
i
t
h

t
h
e

t
u
r
t
l
e

a
t

v
e
r
i
e
v
e

t
i
m
e
s
,

%
.
1

i
n

t
h
e

s
a
n
e

d
i
r
e
c
t
i
o
n
.

Y
o
u

e
o
n
t
u
r
n

t
h
e

t
u
r
t
l
e
.

T
y
e
*

L
E
F
T

r

R
I
G
H
T

c
i
-

f
e
l
l
o
s
e
d

b
y

o
n
e

i
n
p
u
t

w
h
i
c
h

i
s

t
h
e

n
u
r
b
r

o
f

d
e
g
r
e
e
s

t
o

t
u
r
n
,

I
t

t
a
k
e
s

F
a 4

3
6
0

d
e
g
r
e
e
s

f
o
r

t
h
e

t
u
r
t
l
e

t
o

o
n
n
l
e
t
l
v

t
u
r
n

a
r
o
u
n
d

s
o

t
h
a
t

i
t
.
i
s

h
e
e
d
e
d

i
n

t
h
e

*
s
a
e

d
i
r
e
c
t
i
o
n
.

A
s
k

s

t
u
t
o
r

i
f

y
o
u

d
o
n
'
t

k
n
o
w

w
h
e
t

>
a
d
e
e
r
e
e
e
a

t
t
h
e

t
u
r
t
l
e

d
o
e
s

n
o
t

g
e
t

L
E
F
T

9
0

o
r

S
I
G
H
T

9
0

R
I
G
H
T

4
5

o
r

L
E
F
T

4
.
4
5

r

e
r

s
o
l
d
e
r
)
.

0
0

T
r
y

s
o
n
s

o
f

t
h
e

f
o
l
l
o
w
i
n
g

e
i
s
r
p
l
e
s

s
r

m
a
k
e

u
p

y
o
u
r

o
w
n
s

>
L
E
F
T

S
U
N

4
5

A
h
D

9
0

M
I
G
H
T

'
D
E
G
R
E
E
S
'

L
E
F
T

X
A
I
G
H
T

R
E
Q
U
E
S
T

(
L
E
F
T

Q
U
O
T
I
E
N
T

O
F

3
6
0

A
N
D
'
)

)
4

R
I
G
H
T

L
E
F
T

1
1

L
E
F
T

3
6
0

o
r

R
I
G
H
T

3
6
0

A
f
t
e
r

m
e
w
i
n
g

e
n
d

t
u
r
n
i
n
g

t
h
e

t
u
r
t
l
e
.

t
y
p
e

H
O
M
E
,

T
h
i
s

w
i
l
l

r
e
t
u
r
n

t
h
e

t
u
r
t
l
e

t
o

t
h
e

o
r
i
g
i
n
s
)

d
i
r
e
c
t
i
o
n

e
n
d

P
o
s
i
t
i
n

i
t

h
a
d

w
h
e
n

i
t

f
i
r
s
t

8
0
0
1
1
4
1
.
4
1
1
O

e
n

t
h
e

s
c
r
e
e
n
.

(
W
I
P
E

d
o
e
s

t
h
i
s

t
e
e
.

b
u
t

i
t

e
r
a
s
e
s

y
o
u
r

P
i
c
t
u
r
e

a
n
d

p
u
t
s

t
h
e
'
P
E
N
U
P
)
.

P
O
K
E

U
N
P
O
K
E

H
I
D
E

A
n
y

t
i
m
e

y
o
u

t
y
p
e

S
E
E
,

t
h
e

t
u
r
t
l
e

w
i
l
l

'
,
p
e
e
r
.

I
f

Y
o
u

t
y
p
e

S
E
E

w
h
e
n

y
o
u

f
i
r
s
t

s
t
a
r
t

L
o
g
o
.

t
h
e

t
u
r
t
l
e

w
i
l
l

a
p
p
e
a
r

a
t

t
h
e

c
e
n
t
e
r

o
f

t
h
e

s
e

P
P
P
P
p

P
l
e
s
s
e

t
y
p
e

S
E
E

(
y
o
u

m
a
y

h
a
v
e

t
o

w
a
i
t

a

f
e
w

s
e
c
o
n
d
s

f
o
r

t
h
e

t
u
r
t
l
e

t
o

w
o
k
e

u
p
.
)

I
s

t
h
e

t
u
r
t
l
e
'
s

h
e
e
d

P
O
K
E
.
%

o
r

U
N
P
O
K
E
d
?

c>
5.

T
r
y

e
a
c
h

o
f

t
h
e

c
o
m
m
e
n
d
s

U
N
P
O
K
E
.

P
O
K
E
.

H
I
.
,
E

a
n
d

S
E
E

u
n
t
i
l

Y
e
u

a
r
e

b
y
r
e

o
f

w
h
a
t

e
a
c
h

c
o
m
m
e
n
d

d
o
e
s

t

t
h
e

t
u
r
t
l
e
'
s

a
p
p
e
a
r
a
n
c
e
.

T
h
e

W
i
l
e

h
a
s

p
a
n

I
.

d
r
e
w

w
i
t
h
.

w
h
i
c
h

o
w
n

b
e

u
p

o
r

d
o
w
n
.

P
E
N
U
P

(
e
n
d

P
O
K
E
)

P
E
N
D
O
K
N

(
a
n
d

P
O
K
E
)

T
h
e

t
u
r
t
l
e

e
n

t
h
.
s
e
r
e
n

h
o
e

i
t
s

p
e
n

i
n

P
o
s
i
t
i
o
n
,

2
1
L
T

T
h
e

v
a
l
u
e

o
f

a

n
a
m
e

I
a

n
o
t

o
b
v
i
o
u
s

f
r
o
m

l
o
o
k
i
n
g

a
t

t
h
e

n
a
m
e
.

Y
o
u

h
a
v
e

t
o

u
s
e

t
h
e

.

c
o
m
m
a
n
d

t
o

f
i
n
d

o
u
t

t
h
e

n
a
m
e
'

v
a
l
u
e
,

L
o
o
s

L
i
t
e
r
a
l

'
a
g
e

1
3
L
T
)

h
a
s

n
o
t
h
i
n
g

u
p

h
i
e

s
l
e
e
v
e
s

a
n
d

y
o
u

O

c
a
n

s
e
e

h
i
s

v
a
l
u
e

i
m
m
e
d
i
a
t
e
l
y
,

"
0 1
-
g

1
1
1
i
s

h
i
d
i
n
g

s
o
m
e
t
h
i
n
g
,

N
a
o
m
i

h
a
m
s

'
U
d

4
n

N
a
o
m
i

N
a
m
e

I
s

h
i
d
i
n
g

h
e
r

v
a
l
u
e

b
u
t

s
h
e

w
i
l
l

t
e
l
l

0
1

P
7

7
4
l
U

I
f

y
o
u

U
s
e

t
h
e

t
i

c
o
m
m
e
n
d

t
o

t
n
3
K

h
e
r

r
e
m
e
m
b
e
r

C
o
m
m
e
n
d
.

Y
o
u

c
a
n

u
s
e

t
h
e

v
a
l
u
e

f
o
r

Y
e
w
.

D
4

D
4

T
y
p
o

o
o

f
o
l
l
o
w
i
n
g

M
A
K
E

c
o
m
m
a
n
d
s
;

f
D

y
o
u

h
e
r

M
A
K
E

"
M
O
R
T
"

"
C
H
A
R
L
I
E

B
R
O
W
N
'

H
A
K
E

'
C
H
A
R
L
I
E

B
R
O
W
N
'

"
L
/
N
U
S
"

(
s
i
n
c
e

a

n
a
m
e

d
o
e
s
n
'
t

h
a
v
e

t
o

b
e

a

l
i
t
e
r
a
l
s

Y
o
u

c
o
u
l
d

t
y
p
e

H
A
K
E

(
S
N
O
U
T
S

"
L
I
N
U
3
f
)

M
A
K
E

L
I
N
U
3
"

"
B
L
A
N
K
E
T
"

M
A
K
E

"
D
I
S
T
A
N
C
E
"

2
5

M
A
K
E

"
A
N
G
L
E
'

P
R
O
D
U
C
T

3

A
N
D

T
h
:
N
G

O
F

'
D
I
S
T
A
N
C
E
'

(
t
h
i
s

c
a
n

b
e

s
h
o
r
t
e
n
e
d

t
o

M
A
K
E

"
A
N
G
L
E
'

P
R
O
D

3

I
D
I
S
T
A
N
C
E
(
)

M
A
K
E

8
2
3
9

"
T
W
E
N
T
Y

F
I
V
E
'

M
A
K
E

6
2
"

8
3
"

M
A
K
E

'
A
N
S
W
E
R
'

R
E
Q
U
E
S
T

1
6
L
T

P
a
r
t

i
h

I
n

P
a
r
t

3
,

y
o
u

P
r
o
b
a
b
l
y

n
o
t
i
c
e
d

t
h
e

a
a
a
a
a

y

i
n
t
r
o
d
u
c
t
i
o
n

o
f

t
w
o

n
e
w

g
a
m
-
a
n
d
s
.

S
U
M

a
n
d

'
t
e
n
t
.

S
u
m

t
e
k
a
s

t
w
o

i
n
p
u
t
s

(
P
R
I
N
T

o
n
l
y

h
a
d

e
n
e
i
)

a
d
d
s

t
h
i
s

t
o
g
e
t
h
e
r

(
s
o

t
h
e
y

m
u
s
t

b
e

n
u
r
b
s
r
e
)

a
n
d

O
u
t
p
u
t
s

t
h
e
i
r

*
U
m

(
t
h
e

c
o
m
m
e
n
d

S
U
M

h
a
s

t
h
e

v
a
l
u
e

o
f

t
h
e

s
u
e

o
f

t
h
e

t
w
o

i
n
p
u
t
s
)
.

W
O
R
D

t
a
k
e
s

t
w
o

I
r
o
u
t
s
.

I
t

o
l
u
e
s

t
h
e

b
e
g
i
n
n
i
n
g

o
f

t
h
e

a
s
c
e
n
d

I
n
p
u
t

t
o

t
h
e

a
n
d

o
f

t
h
e

f
i
r
s
t

'
n
o
w
t

a
n
d

o
u
t
p
u
t
s

a

n
e
w

w
o
r
d
,

T
r
y
l

P

S
U
M

O
F

m
3

A
N
D

S

X
P

0
A
S
C

7
7

)
(
1
1

S
U
M

j
;
7
1
1

S
U
M

S
U
M

3

4

5

P

W
O
R
D

A
S
C
8

7
7

P

h
O
R
O

6
1
1
1
°

"
2
2
2
*

X
1
0

W
O
R
O

A
W
O
R
D
"

"
A

S
E
N
T
E
N
C
E
"

L
O
'
(
i
7
'
9

P

W
O
R
D

W
O
R
D

"L
O

"
A
N
D

"
G
O
"

"
G
O
"

A
Y
Z
X
J
P

W
O
R
D

'
K
W

A
N
D

S
U
M

4

A
N
D

1
1
g
)

A
P

S
U
M

3

A
N
D

W
O
R
D

O
F

9

A
N
D

9

Y
e
u

m
e
n

d
e
c
i
d
e

f
o
r

y
o
u
r
s
e
l
f

w
h
e
t
h
e
r

o
r

n
o
t

y
o
U

w
a
n
t

t
o

u
s
e

O
F

(
a
l
l
o
w
e
d

b
e
t
w
e
e
n

t
h
e

n
s
m
e

o
f

c
o
m
m
e
n
d

a
n
d

i
t
s

f
i
r
s
t

i
n
o
l
u
t
)

a
n
d

A
N
D

(
a
l
l
o
w
e
d

b
e
t
w
e
e
n

c
o
m
m
a
n
d
'
s

i
n
p
u
t
s
)
`
.
'

D
o

y
o
u

t
h
i
n
k

u
s
i
n
g

A
N
D

a
n
d

O
F

.
-
-

m
a
k
e
s

L
o
g
o

l
o
o
k

m
o
r
e

l
i
k
e

E
n
g
l
i
s
h
?

S
o

f
a
r

y
o
u

h
a
v
e

u
s
e
d

v
a
l
u
e
s

I
n

t
h
e

f
o
r
m

o
f

l
i
t
e
r
a
l
s

(
w
h
i
c
h

U
t
a
u
t

t
h
e
m
s
e
l
v
e
s
)

a
n
d

c
o
m
m
a
n
d
s

l
i
k
e

W
O
R
D

a
n
d

S
U
M

w
h
i
c
h

o
u
t
p
u
t

v
a
l
u
e
s

d
e
p
e
n
d
i
n
g

o
n

t
h
e
i
r

i
n
p
u
t
s
.

T
h
e

c
o
m
r
e
n
d

R
E
Q
U
E
S
T

d
o
s
s

n
o
t

h
a
v
e

a
n
y

i
n
p
u
t
s

b
u
t

m
a
k
e
s

L
o
g
o

w
a
i
t

f
o
r

y
o
u

t
o

t
y
p
e

s
o
m
e
t
h
i
n
g

e
n

t
h
e

t
y
p
e
w
r
i
t
e
r

a
n
d

o
u
t
p
u
t
s

t
h
a
t

v
a
l
u
e
.

Y
a
w

c
a
n

s
o
m
m
a
n
d

L
o
g
e

t
o

M
A
K
E

a

a
a
a
a
a
a

h
a
v
e

l
i
m
e

v
a
l
u
e

(
L
o
n

c
a
l
l
s

t
h
i
s

v
a
l
u
e

a

"
t
h
i
n
g
"
)

w
h
i
c
h

i
s

a

l
i
t
e
r
a
l

o
r

O
t
i
t
a
u
t

o
f

s
e
e
s

m
m
m
m
m

n
d
,

F
o
r

e
x
a
m
p
l
e
,

M
A
K
E

(
w
h
a
t

y
o
u

w
o
u
l
d

t
y
P
t

i
s

u
n
d
e
r
l
i
n
e
d
.
)

w
w
w
w
N
A
M
E
(

"
D
I
G
I
T
S
'

C
.

s
h
o
r
t
s
"

w
a
y

t
o

s
a
y

t
h
e

s
a
n
e

c
o
m
m
e
n
d

T
M
I
N
C
i

8
0
1
2
3
'
5
6
7
5
W
'

i
s

M
A
K
E

'
D
I
G
I
T
S
"

0
t
2
3
4
5
4
7
6
9
8

)

26
LT

P
a
r
t

T
y
c
o
,

R
E
C
T
A
N
G
L
E

D
o
e
s

L
o
g
o

u
n
d
w
r
e
t
a
n
d

t
h
i
s

c
o
m
m
a
n
d
?

1
.
1
0

t
e
7
6

W
h
e
t

d
o

Y
O
U

d
O

w
h
e
t
,

Y
O
U

d
o
n
'
t

u
n
d
e
r
s
t
a
n
d

n
o
w

o
r
d
?

2
2
L
T

*
h
o
t

i
s

t
h
e

v
a
l
u
e

e
f

(
h
i
n
t
,

t
r
y

R
I
N
T
i
n
0

t
h
e

v
a
l
u
e
s
)

Y
o
u

C
O
I

t
e
l
l

.
0
9
0

w
h
e
t

n
e
w

w
o
r
d

m
o
o
n
s

b
y

d
e
f
i
n
i
n
g

i
t

w
i
t
h

w
o
r
d
s

L
o
g
o

a
l
r
e
a
d
y

k
n
o
w
s
.

I
s

t
h
i
s

l
i
k
e

l
o
o
k
i
n
g

u
p

a

w
o
r
d

y
o
u

d
o
n
'
t

"
S
N
O
O
P
Y
"

k
n
o
w

i
n

t
h
e

d
i
c
t
i
o
n
a
r
y
?

I
S
N
O
O
P
Y
I

T
H
I
N
G

O
R

I
S
N
O
C
P
Y
1

T
o

d
e
f
i
n
e

y
o
u
r

o
w
n

L
o
g
o

c
o
m
m
a
n
d
s

(
t
h
e
s
e

r
o

c
a
l
l
e
d

m
o
r
o
c
o
d
u
r
e
0
)

T
H
I
N
G

O
F

T
H
I
N
;

O
F

"
S
N
O
O
P
Y
"

t
i
r
o
s

T
O
,

a
c
t
C
e
,

e
n
d

t
h
e

n
a
m
e

y
o
u

w
a
n
t

y
o
u
r

p
r
o
c
e
d
u
r
e

t
o

h
a
v
e
.

L
o
g
o

T
H
I
N
G

O
F

"
B
L
A
N
K
E
T
'

n
e
w

r
e
s
p
o
n
d
s

w
i
t
h

a

C

i
n
s
t
e
a
d

o
f

a

m

t
o

s
h
o
w

t
h
a
t

y
o
u

a
r
e

d
e
f
i
n
i
n
g

a

p
r
o
c
e
d
u
r
e
.

Y
3
1
1

c
a
n

t
y
p
e

c
o
m
m
e
n
d
s

j
u
s
t

a
s

b
e
f
o
r
e

a
n
d

L
o
g
o

w
i
l
l

o
b
e
y

T
H
I
N
G

O
F

2
5

I
D
I
S
T
A
N
C
E
t

t
h
e
m
.

I
f

y
o
u

w
o
n
t

L
o
g
o

t
o

r
e
m
e
m
b
e
r

c
o
m
m
e
n
d

a
s

p
e
r
t

o
f

y
o
u
r

p
r
o
c
e
d
u
r
e
.

T
H
I
N
G

O
F

"
C
H
A
R
L
I
E

i
l
i
t
O
w
N

t
h
e
n

y
o
u

m
u
s
t

p
r
e
c
e
d
e

t
h
e

l
i
n
e

b
y

a

"
l
i
n
e

n
u
i
t
b
i
f
"

a
n
d

a

s
o
o
t
s
.

T
H
I
N
G

O
F

*
C
H
A
R
L
I
E

D
R
O
W
N
e

e
z
a

P
l
e
a
s
e

t
y
p
e

t
h
e

u
n
d
e
r
l
i
n
e
d

w
o
r
d
.

T
H
I
N
G

O
F

2

T
O

R
E
C
T
A
N
G
L
E

T
H
I
N
G

O
F

S
U
M

O
f

I
S

A
N
D

S

T
H
I
N
G

O
F

%
O
R
D

O
F

°
L
I
"

A
N
D

"
N
U
S
'

*
P
R
I
N
T

(
L
o
g
o

o
b
e
y
s

t
h
i
c

i
m
m
e
d
i
a
t
e
l
y

b
u
t

o
n
l
y

r
e
m
e
m
b
e
r
s

i
t

w
e
e

w
h
i
l
e

i
t

i
s

t
h
e

l
a
s
t

l
i
n
e

y
o
u

t
y
p
e
d
.
)

T
H
I
N
G

O
F

"
A
N
S
W
E
R
"

I
0

P

(
L
o
c
o

d
o
e
s

n
o
t

o
b
e
y

t
h
e
s
e

c
o
m
m
a
n
d
s

n
o
w

b
u
t

r
e
m
e
m
b
e
r
s

%

t
h
a
n

f
o
r

l
a
t
e
r
.
)

(
S
N
O
O
P
Y

2
)

(
C
H
A
R
L
I
E

D
R
O
W
N
)

2
0

P

N
I
P
,
1
*

(
W
h
e
t

c
o
u
l
d

y
o
u

t
y
p
o

n
o
w

t
o

m
a
k
e

L
o
c
o

o
b
e
y

t
h
A
t

c
o
m
m
e
n
d

o
n

l
i
n
e

2
0
7

(
H
i
n
t
'

t
w
o

c
o
n
t
r
o
l
.

c
o
m
m
e
n
c
e
)

e
r
a
s
e
s

t
h
e

l
f
m
a

n
u
m
b
e
r

f
r
o
m

t
h
e

l
i
n
e

L
o
g
o

i
s

r
e
m
e
b
A
r
i
n
d

M
i
l
e

2
0
)
.

c
o
n
t
r
o
l
.
.
4
i
.

t
y
o
e
s

t
h
e

r
e
s
t

o
f

t
h
e

l
i
n
e
.

I
f

y
o
u

d
o
n
u
t

u
n
d
e
r
s
t
a
n
d

t
h
i
s
.

a
s
k

t
u
t
o
r

f
o
r

h
e
l
p
.
)

M
y

n
e
m
'

h
a
s

a

v
a
l
u
e
(
{
?
?

.
s
e
.
c
c
t
'
k
i

4
`

A
i
.

I
l

L
I
N
L
.
.
4
3 I

LI
N

, u
s

"V
C

:5 1-
tr

i
C

/J
A

"
F

IV
E

p
t
.
/

A
.,r

e
f
/
L
O
O
P
Y

T
H
I
N
G

O
F

°
A
.
4
0
0
1
Y
"

T
H
I
P
1
G
O
i
1
7
C
M
7
A
T
I
E

D
R
O
W
N
"

I
S
N
O
C
P
Y
I

C
M
A
R
L
I
E

D
R
O
W
N
t

T
H
I
N
G
-
O
F

T
H
I
N
G

O
F

'
S
N
O
O
P
Y
'

T
H

:
N
G

O
f

:
5
,
1
0
0
1
0
1
.
1

2
8
L
T

E
D
I
T

R
E
C
T
A
N
G
L
E

2
5

9

"
E
N
D

O
F

R
E
C
T
A
N
G
L
E
"

(
Y
o
u

c
a
n

a
d
d

n
e
w

l
i
n
e
s
.
)

e
2
5

P

"
T
H
E
R
E

W
E
N
T

A

R
E
C
T
A
N
G
L
E
"

(
Y
o
u

c
a
n

r
e
p
l
a
c
e

l
i
m
e
s
.
)

:
0
L

5

5 S
E
N
D

.
.
.
.
.

5

P

"
H
E
R
E

I
S

A

R
E
C
T
A
N
G
L
E
"

1
5

P

I
I
.

0

2
7
L
T

(
Y
o
u

c
a
n

i
n
s
e
r
t

l
i
n
e
s

o
u
t

o
f

O
P
O
O
P

a
n
d

b
e
t
w
e
e
n

o
t
h
e
r

l
i
n
e
s

i
t
i
s

g
o
o
d

i
o
e
a

t
o

l
e
a
v
e

O
O
P
,

P
O
O
P

b
y

n
u
r
b
e
r
i
n
g

l
i
n
e
'

b
y

1
0
1
s
)

(
T
h
i
s

i
s

s
h
o
r
t

f
o
r

E
D
I
T

L
I
N
E

5
,

L
o
g
o

n
o
w

n
e
k
e
s

l
i
n
e

5

L
I
S
T

(
T
h
i
s

s
h
o
w
s

y
o
u

w
h
a
t

L
o
g
o

r
e
m
e
m
b
e
r
s

.
.
.
.
.
.

t
h
e

P
r
e
v
i
o
u
s

l
i
n
e

t
y
p
e
d
.

s
o

y
o
u

c
a
n

u
s
e

c
o
n
t
r
o
l
E
s
4
.
3
.
)

s
o

f
a
r

f
o
r

R
E
C
T
A
N
G
L
E
,

L
o
g
o

c
r
a
s
s

y
o
u
r

T
O

R
E
C
T
A
N
G
L
E

P
r
o
c
e
d
u
r
e

i
n

t
h
e

o
r
d
e
r

o
f

i
t
s

l
i
m
e

c
o
n
t
r
o
l

c
o
n
t
r
o
l

c
o
n
t
r
o
l

c
o
n
t
r
o
l

R
E
T
U
R
N

N
N

S
E

5
P
R
I
N
T

"
H
E
R
E

I
S

A

R
E
C
T
A
N
G
L
E
"

n
u
m
b
e
r
s

a
n
d

e
x
p
a
n
d
s

a
b
b
r
e
v
i
a
t
i
o
n
'
s
)

P
R
I
N
T

"
M
E
R
E

C
O
M
E
S

A

R
E
C
T
A
N
G
L
E
"

1
0

P
R
I
N
T

+
4
0

1
5

P
R
I
N
T

o
r

i
o

(
Y
o
u
'
v
e

f
i
n
i
s
h
e
d

r
e
d
e
f
i
n
i
n
g

R
E
C
T
A
N
G
L
E
)

2
0

P
R
I
N
T

1
4
1

L
I
S
T

R
E
C
T
A
N
G
L
E

.
(
T
o

s
e
e

t
h
a
t

L
o
g
o

r
e
m
e
m
b
e
r
'

y
o
u
r

p
r
o
c
e
d
u
r
e
.

t
y
p
o

L
I
S
T

f
o
l
l
o
w
e
d

b
y

t
h
e

P
r
o
c
e
d
u
r
e

n
a
m
e
.
)

T
O

R
E
C
T
A
N
G
L
E

5
P
R
I
N
T

"
H
E
R
E

C
O
M
E
S

A

R
E
C
T
A
N
G
L
E
"

1
0

P
R
I
N
T

P
.
.
.

1
5

P
R
r
a

.
.

4
6

2
0

P
R
I
N
T

1
4
4
4
1

3
0

P
R
I
N
T

'
T
H
E
R
E

%
E
N
T

A

R
E
C
T
A
N
G
L
E
'

E
N
D

R
E
C
T
A
N
G
L
E

H
E
R
E

C
O
M
E
S

A

R
E
C
T
A
N
G
L
E

r
o
t
.

.
. 4
,
4
6

T
H
E
R
E

W
E
N
T

A

R
E
C
T
A
N
G
L
E

k
h
a
n

L
o
g
o

s
t
a
r
t
s

t
o

f
o
l
l
o
w

t
h
e

i
n
s
t
r
u
c
t
i
o
n
s

y
o
u

h
a
v
e

t
y
p
e
d

i
n

4
.

R
E
C
T
A
N
G
L
E

i
t

b
e
g
i
n
s

w
i
t
h

t
h
e

l
o
w
e
s
t

l
i
n
e

n
u
m
b
e
r
,

w
h
i
c
h

i
s

t
i
n
s

i
n

R
E
C
T
A
N
G
L
E
.

L
o
g
o

c
o
n
t
i
n
u
e
s

o
b
e
y
i
n
g

c
o
m
m
e
n
d
s

i
n

o
r
d
e
r

o
f

i
n
c
r
e
a
s
i
n
g

S
E
N
D

(
Y
o
u
'
v
e

f
i
n
i
s
h
e
d

d
e
f
i
n
i
n
g

R
E
C
T
A
N
G
L
E
.
)

T
o

m
a
k
e

L
o
g
o

o
b
e
y

R
E
C
T
A
N
G
L
E
.

J
u
s
t

t
y
p
e

i
t
s

n
a
m
e
,

R
E
C
T
A
N
G
L
E

H
E
R
E

I
S

A

R
E
C
T
A
N
G
L
E

.
4
.

r S
i
n
c
e

R
E
C
T
A
N
G
L
E

n
e
e
d
s

n
o

i
n
p
u
t
s

(
v
a
l
u
e
s
)

a
n
d

h
a
s

n
o

o
u
t
p
u
t

(
w
i
l
y
.
)
,

i
t

s
a
y

t
a
e

r
e
p
r
e
s
e
n
t
e
d

a
s

j
u
s
t
l

R
E
C
T
A
N
G
L
E

B
e
s
i
d
e
s

e
d
i
t
i
n
g

l
i
n
e
s

(
w
h
i
c
h

y
o
u

s
h
o
u
l
d

k
n
o
w

h
o
w

t
o

d
o

n
o
w

m

r
e
m
e
m
b
e
r

c
o
n
t
r
o
l
m
A
,
E
,
N
,
R
,
S
.
w
l
x
?
)
)
,

y
o
u

c
a
n

a
l
s
o

e
d
i
t

P
r
o
c
e
d
u
r
e
s
.

T
y
p
e

E
D
I
T

f
o
l
l
o
w
e
d

b
y

t
h
e

p
r
o
c
e
d
u
r
e

n
a
m
e

a
n
d

t
h
e

R
E
T
U
R
N

k
e
y
.

3
0
1

2
9
L
T

T
y
p
e

R
E
C
T
A
N
G
L
E
.

T
o

g
e
t

L
o
g
o

t
o

s
t
o
p

k
E
L
T
A
N
G
L
E
.

t
y
p
e

c
o
n
t
r
o
l
h
G
,

Y
o
u
r

i
i
w

'
,
w
h
o
'
r
e
,

A
f
t
,
.

L
0
0
0

o
b
e
y
s

t
h
e

o
o
h
h
r
d

o
f
t

t
h
e

h
i
g
h
e
s
t

n
u
"
c
e
r
e
d

l
i
n
g

R
E
L
Y
/
P
.
3
L
E

p
r
o
c
e
d
u
r
e

i
s

l
i
k
e

t
h
e

s
t
o
r
y
*

P
e
t
e

a
n
d

k
e
p
e
a
t

w
e
r
e

i
n

a

b
o
a
t
.

(
w
h
i
t
%

i
s

)
i
t

s
t
o
o
l

/
o

g
o
e
s

r
a
c
k

t
o

c
o
e
v
i
r
o

(
g
i
v
i
n
g

c
o
n
t
r
o
l

t
o
)

P
e
t
e

f
e
l
l

i
n
.

F
h
o

w
a
s

l
o
f
t
?

I
f

y
o
u

s
a
y

R
e
p
e
a
t
.

t
h
e
n

y
o
u

h
a
v
e

t
o

h
h
c
e
v
e
r

l
a
s
t

g
e
e
d

t
.
0

^
4
.
8

R
E
C
T
A
N
G
L
E
.

S
1
.
C
8

y
o
u

t
y
p
e
d

R
E
C
T
A
N
G
L
E

a
s

l
i
s
t
e
n

t
o

t
h
e

s
t
o
r
y

a
g
a
i
n

a
n
d

a
g
a
i
n

a
n
d

a
g
a
i
n
.

D
o

y
o
u

t
h
i
n
k

R
E
C
T
A
N
G
L
E

c
o
"
0
"
0

'
r
e
'

t
h
e

t
v
c
e
h
r
i
t
e
r
.

L
o
d
e
,

r
e
t
u
r
n
s

t
o

t
h
e

t
y
p
e
w
r
i
t
e
r

f
o
r

r
o
e
'
.

w
i
l
l

e
v
e
r

s
t
o
p
?

C
o
P
.
e
.
O
s

t
o

0
0
e
y
.

D
o

y
O
U

t
*
.
i
^
K
,

t
h
a
t

y
o
u

c
a
n

W
i
l
e

P
r
o
c
e
c
u
r
e

a
s

'
1
1

h
e
r
e

i
s

p
r
o
c
e
d
u
r
e

f
o
r

t
h
e

P
e
t
e

a
n
d

R
e
p
e
a
t

s
t
o
r
y
,

c
o
e
a
r
d

o
r

a

l
i
r
e

i
n

s
m
o
t
h
e
r

p
r
o
c
e
d
u
r
e
?

4
T
O

R
E
P
E
A
T

1
0

P
R
I
N
T

'
P
E
T
E

A
N
D

R
E
P
E
A
T

F
E
R
E

I
N

A

B
O
A
T
,
*

T
r
y
'

T
O

T
P
O
R
E
C
T
A
N
G
L
E
S

2
0

P
R
I
N
T

"
P
E
T
E

F
E
L
L

I
N
.

W
r
0
0

W
A
S

L
E
F
T

?
'

c
f

3
0

T
E
S
T

I
S

R
E
G
U
E
3
T

"
R
E
P
E
A
T
"

1
0

R
E
C
T
A
N
G
L
E

(
w
e

s
a
y

t
h
a
t

T
h
O
R
E
C
T
A
N
G
L
E
S

g
i
v
e
s

c
o
n
t
r
o
l

t
o

4
0

I
F
F
A
L
S
E

P
R
I
N
T

"
I
l
w

S
O
R
R
Y
,

I
T

O
A
S

R
E
P
E
A
T
*

/
.
.
4

\
1
1
0

5
0

R
E
P
E
A
T

(
*
c
e
l
l
s
)

t
h
e

R
E
C
T
A
N
G
L
E

P
r
o
c
e
d
u
r
e
.

L
o
g
o

o
b
e
y
s

E
N
D

-
P
r

.

R
E
C
T
A
N
G
L
E

u
n
t
i
l

R
E
C
T
A
N
G
L
E

s
t
o
o
l
.

T
h
e
n

L
o
g
o

g
o
.
.

N
.

W
r
i
t
.

p
r
o
c
e
d
u
r
e

t
o

d
r
a
w

s
o
m
e
t
h
i
n
g

w
i
t
h

t
h
e

t
u
r
t
l
e
.

T
r
y

t
o

d
o

i
t

b
a
t
e

t
o

o
b
e
y
i
n
g

T
r
O
R
E
C
T
A
N

s
t
o
r
e

f
i
r
s
t
.

T
a
l
k

t
o

a

t
u
t
o
r

i
f

y
o
u

c
a
n
'
t

t
h
i
n
k

h
o
w

t
o

b
e
g
i
n
.

S
o
m
e

1

G
L
E
S

h
e
r
e
.
)

V
!
I
d

i
d
e
a
s

a
r
e

t
o

d
r
a
w

a

r
e
c
t
a
n
g
l
e
.

a

t
r
i
a
n
g
l
e
,

s
o
n
e
-
l
e
t
t
e
r
s

o
f

t
h
e

a
l
p
h
a
b
e
t

2
0

P
R
I
N
T

"
O
c
t
,

N
O
,

N
O
T

A
N
O
T
H
E
R

O
N
E
0

F
.
"

\
I
D

V
o

4

0

r

t
o

r
a
k
e

t
h
e

P
r
o
c
e
d
u
r
e

b
e
l
o
w

d
o

s
o
m
e
t
h
i
n
g

g
i
s
t
.

Y
o
u
r

p
r
o
c
e
d
u
r
e

s
h
o
u
l
d

3
0

R
E
C
T
A
N
G
L
E

(

T
P
O
R
E
C
T
A
N
G
L
E
S

c
a
l
l
s

R
E
C
T
A
N
G
L
E

e
o
s
i
n
s
)

n
o
t

b
e

m
o
r
e

t
b
s
.
.

t
e
n

(
1
0
)

1
1
n
e
l

l
o
n
g
.

Y
o
u

c
a
n

d
i
v
i
d
e

t
h
e

P
r
o
b
l
e
o

i
n
t
o

q
1
P
r
o
c
e
d
u
r
e
s

a
n
d

t
h
e
n

u
s
e

t
h
e
i
r

n
a
m
e
s

i
n

s
t
a
r
t
"

p
r
o
c
e
d
4
r
e
.

1
:
0

C
h
a
r
g
e

T
P
O
R
E
C
T
A
N
G
L
E
S

s
o

t
h
a
t

l
i
n
e

1
5

i
s

S
T
O
P
.

(
L
o
o
k

a
t

c
a
g
e

2
6
L
T

i
f

-
-
-

T
O

M
E
E
T

1

L
O
G
O

I
G
N
O
R
E
S

S
T
U
F
F

A
F
T
E
R

S
E
M
I
C
O
L
O
N
S

1
0

P
P
I
N
T

'
I
'
M

T
H
E

T
U
R
T
L
E
.

.
M
A
T
'
S

Y
O
U
R

N
A
M
E

?
'

y
o
u
'
v
e

f
o
r
g
o
t
t
e
n

h
o
w

t
o

E
D
I
T

a

p
r
o
c
e
d
u
r
e
.
)

N
o
w

t
y
p
e

T
P
O
R
E
C
T
A
N
G
L
E
S
,

D
i
d

_
.
.
.
.
i

si
.

2
0

P
U
K
E

"
Y
O
U
R
N
A
H
E
*

R
E
G
u
E
S
T

3
0

P
R
I
N
T

S
E
N
T
E
N
C
E

"
N
C
.
/

F
A
R

0
0

Y
O
U

W
A
N
T

M
E

T
O

M
O
V
E
,

'

1
Y
O
U
R
N
A
M
E
1

L
o
g
o

p
r
i
n
t

t
h
e

s
e
c
o
n
d

r
e
c
t
a
n
g
l
e
?

S
o

y
o
u

c
a
n

u
s
e

t
h
e

C
l
)

4
0

P
E
N
D
O
w
N

5
0

F
R
O
N
T

R
E
Q
U
E
S
T

c
o
m
m
a
n
d

t
o

r
a
w
.

a

p
r
o
c
e
d
u
r
e

s
t
o
p

b
e
f
o
r
e

i
t
s

l
a
a
t

l
i
n
e
,

9
6
0

P
R
I
N
T

"
T
H
I
N
K
I
N
G

A
F
W
I
L
E
.
.
.
*

.
7
0

W
A
T
T

1
0

i

L
O
G
O

W
A
I
T
S

1
0

S
E
C
O
N
D
S

8
0

P
R
I
N
T

'
S
C
R
E
E
C
H
I
N
G

A
R
O
U
N
D

A

C
O
R
N
E
R
'

D
o

Y
O
U

t
h
i
n
k

t
h
a
t

Y
O
U

c
a
n

u
s
e

a

p
r
o
c
e
d
u
r
e

s
e

c
o
m
m
a
n
d

o
n

o
r
e

o
f

i
t
s

o
w
n

9
0

L
E
F
T

9
0

C
D

<
4

1
0
0

F
R
O
N
T

1
0
0

l
i
r
e
s

(
c
a
l
l

a

p
r
o
c
e
d
u
r
e

f
r
o
m

i
t
s
e
l
f
)
?

C
h
a
n
g
e

R
E
C
T
A
N
G
L
E

s
o

E
N
D

K
t
h
a
t

l
i
n
e

4
0

i
s

n
E
C
T
A
N
G
L
E
.

Y
o
u

c
a
n

E
R
A
S
E

a

p
r
o
c
e
d
u
r
e

w
i
t
h

t
h
e

E
R
A
S
E

c
o
r
w
a
r
d
.

F
o
r

x
a
m
p
l
e
s

E
R
A
S
E

R
E
C
T
A
N
G
L
E
.

W
h
a
t

w
i
l
l

h
o
p
p
e
r

n
o
w

i
f

y
o
u

t
y
p
e

L
I
S
T

R
E
C
T
A
N
G
L
E
?

C
r
t
r
o
l
h
R

d
o
e
s

t
o

.
e
n
t
e
n
t
e

w
h
a
t

d
o
e
s

1
0

p
r
o
c
e
d
u
r
e
,

d
o
e
s

t
o

s
e
n
t
e
n
c
e

w
r
i
t

E
R
A
S
E

d
o
e
s

t
o

p
r
o
c
e
d
u
r
e
,

W
I
P
E

d
o
e
s

t
o

a

p
i
c
t
u
r
e

w
h
a
t

d
o
e
s

t
o

P
r
o
c
e
d
u
r
e
,

T
O

R
E
C
T
A
N
G
L
E

5
F
R
/
N
T

'
H
E
R
E

C
O
P
E
S

A

R
E
C
T
A
N
G
L
E
"

1
0

P
R
I
N
T

1
5

P
R
I
N
T

'
.

4
1
1

2
0

P
R
I
N
T

"
h
e
*
"

3
0

P
R
I
N
T

"
T
H
E
R
E

*
E
N
T

A

R
E
C
T
A
N
G
L
E
'

4
0

R
E
C
T
A
N
G
L
E

E
N
D

d
O
L
T

C
h
a
n
g
e

D
O
U
B
L
E

a
s

f
o
l
l
o
w
s

(
t
y
p
e

l
i
n
e

1
0

e
x
e
c
t
l
y
i

i
s

I
s

i
s
)
o

E
D
I
T

D
O
U
B
L
E

1
0

O
U
T
P
U
T

S
U
m

t
h
u
m
B
E
R
!

l
'
i
m
B
E
R
I

f

'
b
u
g

b
e
c
a
u
s
e

o
f

O
i
S
C
D
O
i
l
i
n
g

E
N
D

T
y
p
e
i

P

D
O
U
B
L
E

7

D
i
d

L
o
g
o

c
o
-

p
l
a
i
n
?

I
s

i
t

a

b
u
g
?

w
h
y
?

t

T
h
e
r
e

i
s

u
s
u
a
l
l
y

m
o
r
e

t
h
e
n

o
n
e

w
a
y

t
o

W
P
i
t

a

p
r
o
c
e
d
u
r
e

t
h
a
t

d
o
e
s

t
h
e

s
e
"
.

t
h
i
n
g
.

C
h
i
n
g
.

t
h
e

D
O
U
B
L
E

P
r
o
c
e
d
u
r
e

s
o

t
h
a
t

i
t

d
o
e
s
n
i
t

U
s
e

t
h
e

S
U
M

c
o
m
m
a
n
d
.

(
B
e

s
u
r
e

t
o

f
i
x

t
h
e

m
i
s
s
p
e
l
l
e
d

i
N
m
B
E
R
1
)
.

S
h
o
w

a

t
u
t
o
r

t
h
a
t

y
o
u
r

n
e
w

D
O
U
B
L
E

p
r
o
c
e
d
u
r
e

w
o
r
k
s
.

W
r
i
t
e

a

p
r
o
c
e
d
u
r
e

t
o

U
N
D
O
U
B
L
E

a

n
u
m
b
e
r

(
i
t

s
h
o
u
l
d

O
U
T
P
U
T

a
t
h
e
r

t
h
a
n

P
R
I
N
T
)
.

A
s
k

t
u
t
o
r

i
f

y
o
u

n
e
e
d

h
e
l
p
.

/
-
1

f
S
?

9 M
r

W
h
e
n

Y
o
U

t
y
p
e

w
h
e
t

d
o

Y
o
U

g
e
t
?

i
b -
1

c
r
i

P

U
N
D
O
U
B
L
E

D
O
U
B
L
E

3

P

U
N
D
O
U
B
L
E

O
O
U
O
L
E

4

r
a
,

-
-
f

P

U
N
D
O
U
B
L
E

D
O
U
B
L
E

9
9
9
9
9
9

G
O

D
o
e
s

U
N
D
O
U
B
L
E

u
n
d
o

w
h
e
t

D
O
U
B
L
E

d
i
d

t
o

a

n
u
m
b
e
r
?

N
w
h
e
n

y
o
u

t
o
o
,

w
h
a
t

d
o

Y
O
U

g
e
t
?

N 1
-
;

P

D
O
U
B
L
E

U
N
D
O
U
B
L
E

8

P

D
O
U
B
L
E

U
N
D
O
U
B
L
E

/

7
P

D
O
U
Q
.
E

U
N
D
O
U
B
L
E

1
1
4
1
1

r
.
-
-
-
t

D
o
e
s

D
O
U
B
L
E

u
n
d
o

w
h
a
t

U
N
D
O
U
B
L
E

d
i
d

t
o

n
u
m
b
e
r
?

;
4
1
/
F
f
e
s

3
4
:
.
*

S
:
-

t

-
e
s

a

O
P
O
Z
e
J
4
!
O

o
f

l
e
t
.
a
3

"
.
5
V

r
o
t

w
o
r
k

h
a
y

Y
O
U

t
r
o
u
g
h

I
t

-
O
L
I
O

C
a
t

n
a
y

t
n
e
r
r

i
s

4

"
c
.
.
.
q
.

i
n

v
o
w
.

p
r
o
c
s
o
.
a
r
e
)
.

L
o
c
o

-
a
y

g
i
v
e

y
o
4

a

!
'
e
S
2
3
1
4

(
l
i
c
e

f
m
t
R
E

:
s

I

m
-
i
s
t
v
.
.
.

F
O
R

S
u
'

o
r

C
U

\
E
E
D
S

A

r
i
E
:
J
i
l
s
.
G
)

C
r

L
o
g
e

"
a
y

"
a
t

o
o

t
h
i
n
g
s

y
o
.

e
x
p
e
c
t
e
d

(
l
i
c
e

-
a
c
i
n
g

r
e
c
t
a
n
g
'
e
s

i
n
s
t
e
a
d

o
f

t
r
i
a
n
g
l
e
s
.

o
r

n
e
v
e
r

s
t
o
p
p
i
n
g

-
-

c
o
n
t
r
o
l

C

s
t
o
p
s

o
r
u
n
e
.
a
Y
"

p
r
o
c
e
d
u
r
e
)
.

T
r
e
s
e

'
P
u
g
s
"

a
r
c

n
o
t

v
i
e

k
i
n
d

o
f

I
n
s
e
c
t
s

s
t
u
o
i
e
d

b
y

e
n
t
o
n
o
,
o
g
i
s
t
s

n
o
r

a
r
e

t
n
e
v

e
l
e
c
t
r
o
n
i
c

l
i
s
t
e
n
i
n
g

o
e
v
i
c
e
s
.

A
l
t
h
O
U
g
r
.

0
6
0
$

!
l
a
y

l
o
o
k

l
i
k
e

m
i
s
t
a
k
e
s

w
h
e
n

y
o
u

f
i
r
s
t

s
e
e

t
h
e
m
,

y
o
u

w
i
l
l

l
e
a
r
n

t
o

s
e
e

t
h
e
i
r

"
a
n
t
"
.
.
i
c
a

a
s

f
u
n
n
y
,

B
u
g
s
:

W
h
a
C

c
a
n

w
e

d
o

t
o

t
h
e
i
r

p
r
o
c
e
o
u
r
e
S
?

"
D
e
o
u
g
g
i
n
g
"

(
t
n
e

p
r
o
c
e
s
s

o
f

f
i
n
n
i
n
g
,

u
n
d
e
r
s
t
a
n
o
i
n
g
l

a
i
d

c
h
a
n
g
i
n
g

b
u
g
s
)

(
s

V
e
r
y

r
u
c
h

l
i
k
e

p
l
a
y
i
n
g

a

d
e
t
e
c
t
i
v
e

g
a
m
e

l
i
k
e

C
l
u
e
.

Y
o
u

n
e
e
o

t
o

k
n
o
w

w
h
o

d
i
d

w
h
a
t
,

w
h
e
r
e
,

a
n
d

w
h
y
.

F
o
r

e
x
a
m
o
l
e
.

S
U
M

O
F

A
n

A
N
D

"
3
"

s
n
o
u
l
d

m
a
k
e

L
o
g
o

c
o
m
p
l
a
i
n
t

I
N
P
U
T
S

M
U
S
T

S
E

N
U
M
B
E
R
S
.

I
t

r
i
g
h
t

b
e

a

c
l
u
e

t
o

w
r
i
s
t

i
s

w
r
o
n
g
.

A

s
i
m
i
l
a
r

m
e
s
s
a
g
e
!

I
"
r
d
i
S

A
T

L
I
K
E

S
O

I
N

P
O
I
U
Y
T

h
e
i
g
h
t

t
e
l
l

y
o
u

w
h
e
r
e

t
o

s
t
a
r
t

h
u
n
t
i
n
g

f
o
r

P
u
g
s

i
n

P
O
I
U
Y
T
.

I
f

y
o
u

h
a
v
e

n
o

i
d
e
a

w
h
e
r
e

t
o

s
t
a
r
t
,

t
r
a
m

b
e
g
i
n

a
t

t
h
e

p
e
o
i
n
n
i
n
g
.

w
i
t
h

t
h
e

f
i
r
s
t

p
r
o
c
e
d
u
r
e

y
o
u

a
s
k
e
d

L
o
g
o

t
o

o
b
e
y
,

%
h
e
n

v
o
u

c
o
n
n
e
c
t

t
h
e

s
p
o
u
t

o
f

o
h
e

f
u
n
c
t
i
o
n

c
o

t
h
e

f
u
n
n
e
l

o
f

c
n
o
t
h
o
r

O
f
u
n
c
t
i
o
n
,

(
f
o
r

e
x
a
m
p
l
e
.

O
2
.
3
6
E

S
U
m

3

4

o
r

O
D
C
J
B
L
E

D
O
u
B
L
E

7
7
)

c
t

t
h
i
s

i
s

c
a
l
l
e
d

f
u
n
c
t
i
o
n

"
c
o
m
p
o
s
i
t
i
o
n

"
.

3
T
h
e

n
e
w

f
u
n
c
t
i
o
n

i
s

r
e
a
l
l
y

C
O
o
P
O
t
e
d

o
f

1
0
D
1

w
h
i
c
h

a
r
e

f
u
n
c
t
i
o
n
s

C
O

t
h
O
n
s
o
1
V
C
S
.

C
>
e
:
,

F
u
n
c
t
i
o
l

C
o
m
p
o
s
i
t
i
o
n

t
w
o

O
r

n
o
r
.

P
a
r
t
,

4
2
L
T

a
l
L
T

t
i
n
y

d
o
e
s
n
'
t

D
O
U
B
L
E

L

'
O
U
B
L
E

w
o
c
k
l

f
o
r

7

o
r

9
9
9
?

F
o
r

w
h
a
t

o
t
h
e
r

A
U
w
b
O
F
S

w
i
l
l

f
a
i
l
?

"
"

I
s

t
h
e
r
e

r
u
l
e
?

1
-

D
O
U
B
L
E

a
n
d

U
N
D
O
U
B
L
E

a
r
e

f
u
n
c
t
i
o
n
s

b
e
c
a
u
s
e

t
h
e
y

t
a
k
e

o
n
e

c
r

m
o
r
e

i
n
p
u
t
s

a
n
o

g
i
v
e

y
o
u

a
n

o
u
t
p
u
t
.

Y
o
u

c
a
n

(
I
)

d
r
o
p

s
o
m
e

i
n
p
u
t
s

i
n
t
o

t
h
e

f
u
n
n
e
l

o
f

t
h
e

f
u
n
c
t
i
o
n

m
a
c
h
i
n
e

(
p
r
o
c
e
d
u
r
e
)

b
e
l
o
w

F
u
n
k
y

F
u
n
c
t
i
o
n

(
2
)

t
u
r
n

t
h
e

c
-
a
n
k

(
c
a
l
l

t
h
e

p
r
o
c
e
d
u
r
e
)

a
n
d

(
3
)

g
e
t

y
O
W
P

o
u
t
p
u
t

f
r
o
m

t
h
e

s
p
o
u
t

C
a
p
o
4
t
P
4
t
)
,

C
O

U
F
u
n
c
t
i
o
n
s

a
l
w
a
y
s

h
a
v
e

o
n
e

o
r

m
o
r
e

i
n
p
u
t
s

a
n
d

o
n
e

o
u
t
p
u
t
.

A

f
u
n
c
t
i
o
n

i
s

a

"
p
a
r
t
i
a
l
"

f
u
n
c
t
i
o
n

i
f

i
t

d
o
s
s

n
o
t

w
o
r
k

f
o
r

a
l
l

i
n
p
u
t
s
,

F
e
s

e
x
a
m
p
l
e
,

D
O
U
B
L
E

"
A
B
C
'

w
i
l
l

g
i
v
e

t
h
e

D
O
U
B
L
E

f
u
n
c
t
i
o
n

m
a
c
h
i
n
e

i
n
o
i
g
e
s
t
i
o
n

b
e
c
a
u
s
e

i
t

a
p
e
s

n
o
t

b
n
o
w

-
w
h
a
t

t
o

o
u
t
p
u
t

(
L
o
g
o

w
i
l
l

2
1
,
1

-
(

g
i
v
e

y
o
u

t
n
e

m
e
s
s
a
g
e

-

o
h
*
*

A
r
e

a
l
l

p
r
o
c
e
d
u
r
e
s

f
u
n
c
t
i
o
n
s
?

Y
E
S

N
O

D
o

a
l
l

p
r
o
c
e
d
u
r
e
s

h
a
v
e

i
n
p
u
t
s
?

D
o

a
l
l

P
r
o
c
e
d
u
r
e
s

O
U
T
P
U
T

a

v
a
l
u
e
?

%
l
i
o
n

y
o
u

t
y
p
e

P

F
I
R
S
T

'
A
U
G
'

4
1
6
L
T

4
4
T

P

S
U
T
F
I
R
S
T

'
A

V
E
R
Y

V
E
R
Y

L
O
N
G

S
E
N
T
E
N
C
E
"

F

L
A
S
T

"
I

R

3

n
H
A
T

A
R
E

n
E

F
I
G
H
T
I
N
G

F
O
R
*

0
P

O
U
T
L
A
S
T

*
S
L
O
P
E

P

O
F

S
F

O
F

B
F

B
F

"
E
L
E
P
H
A
N
T
"

P

1
5
6

S
L

T
H
I
S

I
S

T
O
O

M
U
C
H

T
O

T
Y
P
t
°

P

F

S
F

S
F

'
C
O
O
K
I
E

M
O
N
S
T
E
R
S

L
O
V
E

C
O
O
K
I
E
S
'

N
-
0

4

P

a
t
.

L

'
T
H
E

F
A
T
E

O
F

T
H
E

F
R
E
E

G
A
L
A
X
Y
"

T
O
F
F

'
U
N
I
D
E
N
T
I
F
I
E
D

F
L
Y
I
N
G

O
B
J
E
C
T
S
"

P

S
E
N
T
E
N
C
E

O
F

"
T
H
I
S

I
S
"

A
N
D

"
F
U
N
?
"

w
h
a
t

d
o

y
o
u

c
a
t
?

4,
1 cO

O
O

O
O

O

se
re

r

`I
"1

'
),

)

F
.
-

b
l

P

E

3

°
I

L
I
K
E

H
A
M
B
U
R
G
E
R
S
'

"
W
I
T
H
°

W

"
H
E
T
'

'
C
H
O
P
'

7

4
/ OD

C
D

A
)

P
p

r
i
l
l

I
n

t
h
e

m
i
s
s
i
n
g

r
e
s
u
l
t
s
,

1

"
H
O
T
'

ra
,

co

"
D
O
G
'

'
C
O
L
D
'

4
1

4
4
1
0

'
A

R
E
D

C
A
R
'

v
:

w
r
i
t
e

4

p
r
o
c
e
d
u
r
e

n
f
t
m

t
n
o

i
n
p
u
t
s

W
h
i
C
h

1
.
4
1
1
3

t
h
e

t
U
P
L
I

3
P
4
1
1
1
1

r
e
c
t
a

-
g
l
e
,

O
n
e

i
r
o
u
t

s
n
o
u
l
d

e
a

t
n

l
e
n
g
t
h

o
f

t
n
e

r
e
c
t
r
g
l
e
*

t
r
e

e
t
h
e
r

s
h
c
.
l
d

o
e

i
t
s

n
i
o
t
n
.

F
o
r

e
x
a
-
o
l
o
,

T
O

R
E
C
T

:
L
E
N
G
T
H
S

s
m
I
D
T
n
t

y
o
u

f
i
l
l

i
n

t
h
e

r
e
s
t

E
N
D

W
r
i
t
e

a

p
r
o
c
e
d
u
r
e

w
i
t
h
.
o
n

i
n
p
u
t

w
h
i
c
h

d
r
a
w
s

a

s
q
u
a
r
e
.

T
n
e

I
n
p
u
t

s
h
o
u
l
d

b
e

t
h
e

.
l
e
n
g
t
h

o
f

a

(
Y
o
u

c
a
n

w
r
i
t
e

t
h
e

S
C
U
A
R
E

o
r
o
c
o
d
u
r
e

s
o

t
h
a
t

i
t

J
u
s
t

c
a
l
l
s

o
n

t
h
e

R
E
C
T

p
r
o
c
e
o
u
r
e

a
n
d

R
E
C
T

d
o
e
s

a
l
l

A
n
n

w
o
r
k

f
o
r

y
o
u
.
) W
r
i
t
e

a

p
r
o
c
a
d
u
r

w
i
t
h

o
n
e

i
n
p
u
t

t
o

d
r
a
w

a
n

e
o
u
f
l
a
t
e
r
a
t

(
a
l
l

s
l
o
e
s

d
u
a
l

a
n
d

a
l
l

a
n
g
l
e
s

d
u
a
l
)

t
r
i
a
n
g
l
e
,

T
h
e

i
n
p
u
t

s
h
o
u
l
d

b
e

t
h
e

l
e
n
g
t
h

o
f

s
i
d
e
,

'
C
A
T
'

W
r
i
t
e

p
r
o
c
e
d
u
r
e
s

t
o

d
r
a
w

s
o
m
e

o
f

t
h
e

p
i
c
t
u
r
e
s

b
e
l
o
w

m
a
c
e

o
u
t

o
f

t
r
i
a
n
g
l
e
:
,

r
e
c
t
a
n
g
l
e
s
*

a
n
d

s
o

*
*
*
*

D
e
s
i
g
n

y
o
u
r

o
w
4
1

W
a
t
c
h

o
u
t

'
H
E
L
L
O
°

°
T
H
E
R
E

K
I
D
'

B
O
A
T

W
I
S
H
I
N
G
.

W
E
L
L

A
 A

M
I

A
M

C
A
S
T
L
E

;
4
1

A
,

6
"
1

t
-
A

r
d
:
J

7
G
R
A
I
R

?
M
a
k

C
O

.
F'

11
6T

P
A

C
_

?
?

?
?

?

w
h
a
t
e
v
e
r

y
o
u

w
a
n
t

5
O
L
T

4
7
L
7

w
r
i
t
e

p
r
o
c
e
d
u
r
e

c
a
l
l
e
d

S
E
C
O
N
D

w
h
i
c
h

o
u
t
p
u
t
s

t
h
e

s
e
c
o
n
d

l
e
t
t
e
r

W
r
i
t
e

p
r
o
c
e
d
u
r
e

c
a
l
l
e
d

A
G
A
I
N

t
h
a
t

d
o
u
b
l
e
s

I
t
s

i
n
p
u
t

w
o
r
d

(
I
t
s

o
f

e
n

i
n
p
u
t

w
o
r
e

(
o
r

'
,
m
o
n
o

w
o
r
e

o
f

a
n

i
n
o
u
t

s
e
n
t
e
n
c
e
)
,

i
n
o
U
t

i
s

w
o
r
d
)
,

e
n
d

o
u
t
p
u
t
s

t
h
e

r
e
s
u
l
t
i
n
g

w
o
r
d
,

w
r
i
t
e

p
r
o
c
e
c
u
r

c
a
l
l
e
d

T
h
I
R
D

w
h
i
c
h

o
u
t
p
u
t
s

t
h
e

t
h
i
r
d

l
e
t
t
e
r

O
f

O
f
t

i
n
p
u
t

w
o
r
d

(
o
r

t
h
i
r
d

w
o
r
d

o
f

e
n

i
n
p
u
t

s
e
n
t
e
n
c
e
)
.

w
h
e
n

y
o
u

t
y
p
e

t
h
i
s

y
o
u

s
h
o
u
l
d

g
e
t

P

A
G
A
I
N

"
D
O
G
"

D
O
C
D
O
G

W
r
i
t
e

p
r
o
c
e
d
u
r
e

c
a
l
l
e
d

S
W
I
T
C
H
1
3

t
h
a
t

t
a
k
e
s

i
t
s

i
n
p
u
t

w
o
r
d
,

P

A
G
A
I
N

A
G
A
I
N

"
A
L
D
O
°

A
L
D
C
A
L
D
O
A
L
D
O
A
L
D
O

I
n
t
e
r
c
h
a
n
g
e
s

t
h
e

f
i
r
s
t

a
n
d

t
h
i
r
d

l
e
t
t
e
r
s
,

a
n
d

t
;
u
t
p
u
t
s

t
h
e

r
e
s
u
l
t
i
n
g

P

A
G
A
I
N

h

"
D
V

A
N
D

R
A
C
K
'
,

B
L
A
C
K
B
L
A
C
K

r
o
r
d

Y
o
u
r

P
r
o
c
e
d
u
r
e

s
h
o
u
l
d

c
h
a
n
g
e

A
G
A
I
N

1
E
M
P
T
Y
1

P

A
G
A
I
N

1
2
3
4
5

1
2
3
4
5
1
2
3
4
5

t
h
e
s
e

w
o
r
d
s

I
n
t
o

t
t
t
t

w
o
r
d
s

I
s

A
G
A
I
N

f
u
n
c
t
i
o
n
?

F
I
R
S
T

R
I
F
S
T

P
I
C
T
U
R
E

C
I
P
T
U
R
E

W
r
i
t
e

a

O
P
O
C
I
P
O
U
P

t
h
a
t

t
a
r
o
s

i
t
s

I
O
N
A

w
o
r
d
,

m
o
v
e
s

t
h
e

f
i
r
s
t

C
A
L
E
N
D
A
R

L
A
C
E
N
D
A
R

l
e
t
t
e
r

t
o

t
h
e

e
n
d

o
f

t
h
e

w
o
r
d
,

a
n
d

o
u
t
p
u
t
s

t
h
e

r
e
s
u
l
t
i
n
g

w
o
r
d
,

Y
o
u
r

G
O
R
I
L
L
A

R
O
G
I
L
L
A

P
r
o
c
e
d
u
r
e

s
h
o
u
l
d

c
h
a
n
g
e

E
V
E
N

E
V
E
N

t
h
e
s
e

w
o
r
c
s

i
n
t
o

e
a
c
h

o
f

t
h
e
t
a

w
o
r
d
s
,

D
o
e
s

S
W
I
T
C
h
1
3

u
n
d
o

i
t
s
e
l
f
?

W
h
e
n

y
o
u

t
v
o
e

w
h
a
t

d
o

y
o
u

g
e
t
?

P

S
W
I
T
C
H
1
3

S
h
I
T
C
H
1
3

"
H
O
U
S
E
"

=

S
W
I
T
C
H
1
3

S
w
I
T
C
4
1
3

"
1
2
3
"

P

S
w
I
T
C
4
1
3

S
W
I
I
C
H
1
3

"
W
A
T
E
R
M
E
L
O
N
'
.

S
o
e
t
i
m
e
s

t
h
e
r
e

a
r
e

o
a
i
r
s

o
f

f
u
n
c
t
i
o
n
s
,

e
a
c
h

o
f

w
h
i
c
h

u
n
c
o
i
l
s

t
h
e

w
o
r
k

o
f

t
h
e

o
t
h
e
r
,

w
e

s
a
y

t
h
a
t

t
h
e
y

a
r
e

"
t
h
y

e
e
e
e
e
e

o
f

e
a
c
h

o
t
h
e
r
,

D
O
U
B
L
E

a
n
d

U
N
D
O
U
B
L
E

w
e
r
e

n
o
t

r
e
a
l
l
y

i

f
o
p

a
l
l

n
u
m
b
e
r
s
/

t
h
a
t
'

w
e
r
e

L
A
M
P

A
N
I
L

J
A
B
B
E
R
W
O
C
K
Y

A
B
B
E
R
W
O
C
K
Y
J

O
W
E
R
T
Y

W
E
R
T
Y
O

1
2
3
4
5

2
3
4
5
1

W
r
i
t
e

p
r
o
c
e
c
u
r

c
e
l
l
e
d

F
U
N
N
Y
A
D
D

t
h
a
t

t
a
k
e
s

i
t
s

t
w
o

i
n
p
u
t
s

(
t
h
e
y
.
a
r

n
u
m
b
e
r
s
)
;

a
d
d
s

t
h
e

f
i
r
s
t

d
i
g
i
t

o
f

e
a
c
h

i
n
p
u
t

n
u
m
b
e
r

i
n
c

o
u
t
p
u
t
s

t
h
e

r
e
s
u
l
t
i
n
g

n
u
m
b
e
r
,

W
h
e
n

y
o
u

t
y
p
e

y
o
u

S
h
o
u
l
d

g
e
t

i
n
v
e
r
s
e
s

f
o
r

o
n
l
y

n
u
m
b
e
r
s
,

k
h
a
t

i
s

t
h
e

i
n
v
e
r
s
e

f
u
n
c
t
i
o
n

f
o
r

P

F
U
N
N
Y
A
D
D

6
7

1
5

9

S
W
I
T
C
H
1
3
?

T
r
y

S
W
I
T
C
H
I
3

w
i
t
h

s
o
m
e

i
n
p
u
t
s

w
h
i
c
h

h
a
v
e

l
e
s
s

P

F
U
N
N
Y
A
D
D

1

9
9
9
9
1

1
0

t
h
a
n

t
h
r
e
e

l
e
t
t
e
r
s

a
n
d

w
r
i
t
s

w
h
a
t

h
a
p
p
e
n
e
d

P

F
U
N
N
Y
A
D
D

1
6

F
U
N
N
Y
A
D
D

7
7

2
9
0

1
0

F
U
N
N
Y
A
D
D

F
U
N
N
Y
A
D
D

3
8

7
5

F
U
N
N
Y
A
D
D

2
5

A
l

I

S
4
T

a
n
t
e

a

r
e
c
u
r
s
i
v
e

t
u
r
t
l
e

P
r
o
c
e
d
u
r
e

(
c
a
l
l
e
d

B
E
N
D

o
r

s
o
m
e

o
t
h
e
r

n
a

m
e
)

t
h
a
t

d
r
a
w
s

l
i
n
e
,

t
u
r
n
s
,

d
r
a
w
s

a

l
i
n
e
,

t
u
r
n
s
,

e
t
c
.

Y
o
u

s
n
o
u
l
d

g
i
v
e

i
t

t
w
o

i
n
p
u
t
s
:

t
h
e

f
i
r
s
t

i
n
o
u
t

i
s

t
h
e

d
i
s
t
a
n
c
e

t
h
e

t
u
r
t
l
e

n
o
v
e
s
\

t
h
e

s
e
c
o
n
d

i
n
p
u
t

i
s

t
h
e

a
n
g
l
e

t
o

t
u
r
n
,

B
y

g
i
v
i
n
g

S
E
N
D

d
i
f
f
e
r
e
n
t

i
m
p
u
t
e
s

s
e
e

i
f

y
o
u

c
a
n

g
e
t

i
t

t
o

d
r
a
w

a

h
e
x
a
g
o
n
,

a
n

o
c
t
a
g
o
n
,

a
n
d

a

c
i
r
c
l
e
,

/
/
'

A

p
r
o
c
e
d
u
r
e

c
e
n

t
e
l
l

d
i
f
f
e
r
e
n
t

i
n
p
u
t
s

t
o

i
t
s

b
r
o
t
h
e
r

o
n

t
h
e

no
P

e-
r
i
g
h
t
,

A
r
e

t
h
e

b
r
o
t
h
e
r
s
'

k
n
o
w
l
e
d
g
e

c
l
o
u
d
s

t
h
e

s
a
m
e
?

0
o

ga
<

31

rA
tt.

N
sk

 /r

S
a
L

w
r
i
t
e

r
e
c
u
r
s
i
v
e

p
r
o
c
e
d
u
r
e

(
c
a
l
l
e
d

D
I
A
G
D
A
S
4
)

t
h
a
t

t
y
p
e
s

d
i
a
g
o
n
a
l

d
a
s
n
e
d

l
i
n
e

(
w
h
i
c
h

l
o
o
k
s

l
i
x
e

)

o
n

y
o
u
r

t
y
p
e
w
r
i
t
e
r
,

G
i
v
e

Y
o
u
r

P
P
O
C
4
P
O
J
P

a
n

i
n
p
u
t

s
o

t
h
a
t

y
o
u

w
c
a
n

c
h
a
n
g
e

t
h
e

"
d
a
s
h
i
n
g
"

c
h
a
r
a
c
t
e
r

f
r
o
m

"
w
"

t
o

"
r
"

o
r

"
=
"
,

L
o
g
o

a
l
r
e
a
d
y

K
n
o
w
s

a
b
o
u
t

:
L
I
N
E

F
E
E
D
:

w
h
i
c
h

w
h
e
n

T
Y
P
E
d
,

m
o
v
e
s

t
o

t
h
e

-
n
e
x
t

l
i
n
e

o
n

t
h
e

t
y
p
e
w
r
i
t
e
r

w
i
t
h
o
u
t

g
o
i
n
g

t
o

t
h
e

b
e
g
i
n
n
i
n
g

o
f

w
t
h
e

l
i
n
e
,

(
T
h
e

L
I
K
E
F
E
E
D

c
o
m
m
a
n
d

i
s

t
h
e

s
a
m
e

a
s

T
Y
P
E

:
L
I
N
E

F
E
E
D
1
)

A

p
r
o
c
e
d
u
r
e

c
a
n

t
e
l
l

d
i
f
f
e
r
e
n
t

i
n
p
u
t
s

t
o

i
t
s

b
r
o
t
h
e
r

o
n

t
h
e

r
i
g
h
t
,

A
r
e

t
h
e

b
r
o
t
h
e
r
s
'

K
n
o
w
l
e
d
g
e

c
l
o
u
d
s

t
h
e

s
a
m
e
?

a
l
f
I
.
.
.
.

w
r
i
t
e

a

r
e
c
u
r
s
i
v
e

t
u
r
t
l
e

p
r
o
c
e
d
u
r
e

w
h
i
c
h

s
p
i
r
a
l
s

i
n
w
a
r
d
.

M
o
d
i
f
y

C
a

y
o
u
r

B
E
N
D

p
r
o
c
e
d
u
r
e

s
o

t
h
a
t

w
h
e
n

i
t

c
e
n
t

i
t
s
e
l
f

r
e
c
u
r
s
i
v
e
l
y
,

i
t

w
i
l
l

0 z
g

t
u
r
n

n
o
r
,

t
h
a
n

i
t

J
u
s
t

t
u
r
n
e
d

(
t
h
i
s

a
m
o
u
n
t

o
f

i
n
c
r
e
a
s
e

o
r

d
e
c
r
e
a
s
e

c
o
u
l
d

1
-
3

1
.
4
,

a
l
s
o

b
e

a
n

i
n
p
u
t

/
,

g
g
"

W
r
i
t
e

a

t
u
r
t
l
e

P
r
o
c
e
d
u
r
e

t
o

c
r
a
w

s
o
m
e

"
n
e
s
t
e
d
"

f
i
g
u
r
e
,

F
i
r
s
t
,

V
D

w
r
i
t
e

a

p
r
o
c
e
d
u
r
e

f
o
r

t
h
e

f
i
g
u
r
e

(
d
e
s
i
g
n

y
o
u
r

o
w
n
,

o
r

u
s
e

s
o
m
e
t
h
i
n
g

l
i
k
e

"
:
-

a

s
q
u
a
r
e
,

t
r
i
a
n
g
l
e
,

o
r

h
e
x
a
g
o
r
)

w
h
i
c
h

r
a
s

o
n
e

o
r

m
o
r
e

i
n
p
u
t
s
,

f
o
r

c
a
m
P
l
e
,

l
e
n
g
t
h

o
f

S
i
d
,

o
r

t
u
r
n
i
n
g

a
n
g
l
e
.

T
h
a
n

w
r
i
t
e

a

r
e
c
u
r
s
i
v
e

C
D
.

N
i
b

P
r
o
c
e
d
u
r
e

w
h
i
c
h

c
a
l
l
s

u
p
o
n

t
h
e

f
i
g
u
r
e

w
i
t
h

i
n
p
u
t
s

t
o

a
s

t
h
e

f
i
g
u
r
e

b
e
c
o
m
e

s
m
a
l
l
e
r

o
r

l
a
r
g
e
r
,

c
i

i
n

1
-
1

S
D

1
1

w
r
i
t
e

a

r
e
c
u
r
s
i
v
e

P
r
o
c
e
d
u
r
e

w
h
i
c
h

d
o
e
s

"
r
i
p
p
l
e
"

p
r
i
n
t
i
n
g
.

I
t

p
r
i
n
t
s

i
t
s

i
n
o
u
t
.
.
a
n
d

t
h
e
n

c
a
l
l
s

i
t
s
e
l
f

w
i
t
h

a
n

i
n
p
u
t

w
h
i
c
h

h
a
s

t
h
e

f
i
r
s
t

l
e
t
t
e
r

r
o
v
e
d

t
o

t
h
e

e
n
d

o
f

t
h
e

s
a
m
e

w
o
r
d

f
o
r

t
h
e

f
i
r
s
t

w
o
r
d

m
o
v
e
d

t
o

t
h
e

e
n
d

o
f

t
h
e

s
a
m
e

s
e
n
t
e
n
c
e
)
.

T
h
i
s

p
r
o
b
l
e
m

s
h
o
u
l
d

l
o
o
k

f
a
m
i
l
i
a
r

(
s
e
e

P
o
p
e
s

4
7
L
7

e
n
d

C
8
L
T
)
.

R
I
P
P
L
E

B
A
N
A
N
A
S
"

s
h
o
u
l
d

g
i
V
2

Y
O
U

B
A
N
A
N
A
S

A
N
A
N
A
S
B

N
A
N
A
S
B
A

A
N
A
S
B
A
N

N
A
S
b
A
N
A

e
t
c
,

'c
oc

"T
R

U
E

I-
FA

L
SE

!
R

uE
'R

.L
.5

E
1.

T
gU

E
!

FA
L

SE
!

%
1\

1T
h

t
d

Fc
't

r
t
i
f
a
.

C
f
)

5
9
1
1

W
Y

E
?
g
q

l
i
t
e
r
a
l

n
u
T
c
e
r

n
u
-
h
e
r

G
O

L
L

Y
'

3
0
3

T
R

U
E

!:
"
Z
E
R
O
"

1

h
u
n
S
E
R
?

E
O
U
A
L
P

tt3
6

17
-.

Q

m
i
n
c
e
r

n
u
m
b
e
r

n
u
m
o
e
r

n
u
m
o
o
r

17
M

.4
.

l
i
t
e
r
a
l "
O
A
T
"

%
va

c
E
I
T
e
E
R

I

p
r
e
d
i
c
a
t
e

u
n
k
n
o
w
n

p
r
e
d
f
c
a
t
f

u
n
k
n
o
w
n

"
F
A
L
S
E
"

?
?
?
?

r
.
k
)

-W
cU

)

71
11

.1
E

, B
Y

 G
O

L
L

V
!

A
N

D
 F

A
L

SE
 A

N
D

A
N

D
T

au
s

"
F
A
L
S
E
"

l
i
t
e
r
a
l

j
r
r
Z

F
A
L
S
E

A
G
A
I
I
4

-a
ta

z-
-:

5
N

O
 D

O
U

B
T

"
T
R
U
E
"

M
o
w

FA
L

5E
I,

FA
L

55
!

FA
.L

5E
1T

(Z
U

V
1(

j
)

A
.
'
s
^

h
e
n

L
o
g
o

0
0
0
v
s

t
h
i
s

c
o
m
m
a
n
d

5
5
L
T

P
a
r
t

6

C
o
m
p
u
t
e
r
s

a
r
e

a
b
l
e

t
o

m
a
k
e

d
e
c
i
s
i
o
n
s

a
b
o
u
t

w
h
a
t

t
o

b
e

n
e
x
t

d
e
p
e
o
i
n
g

o
n

w
r
a
t

h
a
s

n
a
p
o
e
n
e
o

l
r
e
s
o
y
.

F
o
r

e
x
a
m
p
l
e

3
u
t
t
1
m
g

f
i
f
t
e
e
n

c
e
n
t
s

i
n
t
o

c
a
n
d
y

m
a
c
h
i
n
e

a
n
d

p
u
l
l
i
n
g

t
h
e

n
t
.
'
s

k
n
o
o

o
o
c
s

n
o
t

O
J
a
r
a
n
t

t
h
a
t

y
o
u

g
i
l
l

O
c
t

M
L
M
I
S
.

I
f

t
n
e

m
a
c
h
i
n
e

i
s

o
u
t

o
f

P
t
w
i
s
,

t
m
e
n

y
o
u

c
a
n

s
e
l
e
c
t

a
n
o
t
h
e
r

I
t
e
m
.

I
f

i
t

i
s

o
u
t

o
f

c
a
n
d
y

e
n
t
i
r
e
l
y
.

i
t

.
1
1
1

r
e
t
u
r
n

Y
o
u
r

m
o
n
e
y
.

Y
O
4

m
a
k
e

c
o
m
p
a
r
i
s
o
n
s

a
n
o

d
e
c
i
s
i
o
n
s

c
v
o
r
y

0
4
Y
:

i
s

s
i
x
'

p
a
c
k

o
f

t
h
e

u
n
c
o
l
a

b
e
t
t
e
r

t
h
a
n

2

Q
u
a
r
t

o
o
t
t
l
e
s
:

s
h
o
u
l
a

y
o
u

O
n

s
e
i
r
%
f
n
;

o
r

p
l
a
y

t
e
n
n
i
s

t
h
i
s

a
f
t
e
r
n
o
o
n
?

c
o
o
s

S
c
o
p
e

t
a
s
t
e

b
a
t
t
e
r

t
h
a
n

L
i
s
t
e
r
i
n
e
?

i
s

M
t
.

E
v
e
r
e
s
t

t
a
l
l
e
r

t
h
a
n

M
t
.

S
h
a
s
t
a
?

i
s

t
h
e

b
a
t
h
.
0
0
n

t
o
P
t
Y

y
e
t
?

L
o
g
o

a
s
k
s

o
t
h
e
r

k
i
n
d
s

o
f

o
u
s
s
t
i
o
n
s

l
i
k
e
;

i
s

b

g
r
e
a
t
e
r

t
h
a
n

7
?

i
s

"
G
E
O
R
G
E
"

a

w
o
r
d
?

i
s

"
X
Y
Z
"

a

n
u
m
b
e
r
?

T
o

a
n
y

o
f

t
h
e
s
e

L
o
g
o

g
i
v
e
s

t
h
e

a
n
s
w
e
r

"
T
R
U
E
"

o
r

"
F
A
L
S
E
"
.

W
h
e
n

1
.
0
0
0

o
b
e
y
s

t
h
e

T
E
S
T

c
o
m
m
a
n
d

w
i
t
h

a
n

i
n
p
u
t

w
h
o
s
e

v
a
l
u
e

i
s

"
T
R
U
E
"
,

y
o
u

c
a
n

i
m
a
g
i
n
e

t
h
s
t

L
o
g
o

t
u
r
n
s

o
n

a

l
i
g
h
t

t
h
a
t

c
a
n

b
e

s
e
e
n

e
v
e
r
y
w
h
e
r
e

i
n

y
o
u
r

p
r
o
c
e
d
u
r
e
,

w
h
e
n

t
h
e

v
a
l
u
e

o
f

i
t
s

i
n
o
u
t

i
s

"
F
A
L
S
E
"
.

T
E
S
T

t
u
r
n
s

o
f
f

t
h
e

l
i
g
h
t
.

W
A

T
T

?

I
F
T
R
U
E

a
n
d

t
h
e

l
i
g
h
t

f
r
o
m

T
E
S
T

i
s

o
n

(
"
T
R
U
E
"
) .0

a
r
o

t
h
e

l
i
g
h
t

f
r
o
,

T
E
S
T

i
s

o
f
f

(
"
F
A
L
S
E
"
)

L
o
g
o

o
b
e
y
s

t
h
e

c
o
m
m
a
n
d

L
o
g
o

i
g
n
o
r
e
s

t
r
e

c
o
m
m
a
n
d

f
o
l
l
o
w
i
n
g

I
F
T
R
U
E

f
o
l
l
o
w
i
n
g

I
F
T
R
L
E

I
F
F
A
L
S
E

L
o
g
o

i
g
n
o
r
e
s

t
h
e

c
o
m
m
a
n
d

L
o
g
o

o
b
e
y
s

t
h
e

:
o
m
r
a
n
d

f
o
l
l
o
w
i
n
g

I
F
F
A
L
S
E

f
o
l
l
o
w
i
n
g

I
F
I
R
L
E

b
3
L

T
h
e

o
n
l
y

l
i
v
i
n
g

c
r
e
a
t
u
r
e
s

o
n

t
h
e

P
l
a
n
e
t

S
i
n
o
p

e
e
e
e
e

o
l
e

z
e
r
o
s

a
n
o

o
n
e
.
.

A

c
o
l
o
n
y

o
f

t
h
e
s
e

l
i
f
e

f
o
r
m
s

f
r
o
m

d
i
n
e
r

(
w
h
o

c
a
l
l

t
h
e
m
s
e
l
v
e
s

"
D
i
g
i
t
s

"
)

l
o
o
k

d
e
c
e
o
t
i
v
e
l
v

l
i
e
s

s
e
a
u
e
r
c
e

o
f

O
'
s

a
n
d

O
s
,

f
o
r

e
x
a
m
p
l
e
,

0 0 ql
1
0
0
0
1
1
0
1
0
0
1
1
,

Y
o
u
r

r
i
s
s
i
o
n

(
s
h
o
u
l
d

y
o
u

d
e
c
i
d
e

t
o

a
c
c
e
p
t

i
t
)

i
s

t
o

w
r
i
t
e

K
a

r
e
c
u
r
s
i
v
e

p
r
o
c
e
d
u
r
e

w
h
i
c
h

w
i
l
l

h
e
l
p

t
h
e

c
o
l
o
n
y

t
o

r
e
p
r
o
d
u
c
e

f
o
r

P
.

T
y
p
e

a
n
d

T
R
A
C
E

t
h
e

f
o
l
l
o
w
i
n
g

p
r
o
c
e
d
u
r
e
.

I
f

y
o
u
'
v
e

f
o
r
g
o
t
t
e
n

S
.

I
g
e
n
e
r
a
t
i
o
n
s
.

Y
o
u
r

p
r
o
C
e
d
u
r
e

s
h
o
u
l
d

p
r
i
n
t

w
h
a
t

t
h
e

c
u
r
r
e
n
t

c
i
-

h
o
w

t
o

T
R
A
C
E

P
r
o
c
e
d
u
r
e
.

a
s
k

t
u
t
o
r
,

C
o
l
c
n
Y

l
o
o
k
s

l
i
k
e
.

T
h
e
n

i
f

t
h
e
r
e

a
r
e

l
o
s
s

t
h
a
n

3
b
i
g
i
t
s

r
e
r
a
i
n
i
n
g

i
n

1 \
I
D

t
h
e

c
o
l
o
n
y

(
t
h
e

C
O
U
N
T

c
o
m
m
a
n
d

r
a
y

b
e

h
a
n
d
y

h
e
r
e
)
,

i
t

s
h
o
u
l
d

d
i
e
,

s
o

y
o
u
r

.
1

,
.
.

b
r
o
c
e
d
u
r
e
.
c
a
n

p
r
i
n
t

"
E
X
T
I
N
C
T
I
O
N
!
!
"

(
o
r

a
n
o
t
h
e
r

a
p
p
r
o
p
r
i
a
t
e

m
e
s
s
a
g
e
)

a
n
a

S
t
o
p
,

O
t
h
e
r
w
i
s
e
,

i
t

s
h
o
u
l
d

f
o
l
l
o
w

t
h
e
s
e

m
a
t
i
n
g

r
u
l
e
s
*

S
I
L
T

Y
o
u
'
v
e

p
r
o
b
a
b
l
y

w
o
n
d
e
r
e
a
t

'
h
o
w

c
a
n

I

g
e
t

r
e
c
u
r
s
i
v
e

o
r
o
c
e
d
u
r
e

t
o

s
t
o
o

b
y

i
t
s
e
l
f

w
i
t
h
o
u
t

h
a
v
i
n
g

t
o

t
y
p
e

c
o
n
t
r
o
l
m
G
?
"

W
i
t
h

t
w
e

T
E
S
T

c
o
m
m
a
n
d
.

y
o
u

c
a
n

f
i
n
d

o
u
t

t
h
e

a
n
s
w
e
r
s

t
o

c
e
r
t
a
i
n

c
o
l
l
a
t
i
o
n
s

(
l
i
k
e

i
s

m
y

i
n
p
u
t

e
q
u
a
l

t
o

z
e
r
o
,

o
r

i
s

t
h
e

v
a
l
u
e

o
f

m
y

s
e
n
t
e
n
c
e

s
o
t
Y
7
)

a
n
d

t
h
e
n

t
e
l
l

L
o
g
o

(
w
i
t
h

I
F
T
R
U
E

o
r

I
F
F
A
L
S
E
)

t
o

S
T
O
P

t
h
e

P
r
o
c
e
d
u
r
e

o
r

C
.
T
P
u
T

a

v
a
l
u
e

(
w
h
i
c
h

a
l
s
o

s
t
o
o
s

p
r
o
c
e
d
u
r
e
)
.

t
d

.
a
.

I
f

t
h
e

f
i
r
s
t

b
i
g
i
t

i
s

1
.

t
h
e
n

t
h
e

f
i
r
s
t

t
h
r
e
e

b
i
g
i
t
s

d
i
e

a
n
d

f
o
u
r

n
e
w

b
i
g
i
t
s

(
1
0
1
1
)

a
r
e

b
o
r
n

a
t

t
h
e

r
i
g
h
t

e
n
d

o
f

t
h
e

c
o
l
o
n
y
,

F
u
r

e
x
a
m
p
l
e
,

i
f

t
h
e

c
o
l
o
n
y

i
s

1
0
0
0
1
.

t
r
e
n

t
h
e

n
e
x
t

g
e
n
e
r
a
t
i
o
n

i
s

0
1
1
0
1
1
.

b
.

I
f

t
h
e

f
i
r
s
t

M
o
l
t

i
s

0
,

t
h
e
n

t
h
e

f
i
r
s
t

t
h
r
e
e

b
i
g
i
t
s

d
i
e

a
n
d

t
w
o

n
e
w

b
i
g
i
t
s

(
0
0
)

a
r
e

b
o
r
n

a
t

t
h
e

r
i
g
h
t

e
n
d

o
f

t
h
e

c
o
l
o
n
y
,

F
o
r

e
x
a
m
p
l
e
,

i
f

t
h
e

c
o
l
o
n
y

i
s

0
1
1
0
1
1
,

t
h
e
n

t
h
e

n
e
x
t

g
e
n
e
r
a
t
i
o
n

i
s

0
1
1
0
0
,

C
.

I
f

t
h
e

f
i
r
s
t

b
i
g
i
t

i
s

n
o
t

0

o
r

1
,

t
h
e
n

y
o
u
r

p
r
o
c
e
d
u
r
e

s
h
o
u
l
d

u
s
e

t
h
e

E
X
I
T

c
o
r
m
a
n
d
.
t
o

c
a
u
s
e

L
o
g
o

e
r
r
o
r

m
e
s
s
a
g
e
,

f
o
r

e
x
a
m
p
l
e
,

I
F
F
A
L
S
E

E
X
I
T

"
A
L
I
E
N

L
I
F
E

F
O
R
M
*

a
n

e
x
a
m
p
l
e

S
I
N
A
R

1
0
0
0
1

1
0
0
0
1

o
f

h
o
w

y
o
u
r

0
1
.
1
0
1
1

0
1
1
0
0

P
r
o
c
e
d
u
r
e

0
0
0
0

0
0
0

m
i
g
h
t

l
o
o
k
,

.
0
0
E
X
T
I
N
C
T
I
O
N
;

T
O

C
H
O
M
P

S
W
O
R
D
S

1
0
,

T
E
S
T

E
M
P
T
Y
P

*
M
O
R
O
I

2
0

I
F
T
R
U
E

S
T
O
P

3
0

P
R
I
N
T

I
h
O
R
O
I

4
0

C
M
O
M
P
.
S
U
T
F
I
R
S
T

O
F

I
W
O
R
D
I

S
O

P
R
I
N
T

S
W
O
R
D
S

E
N
D

C
H
O
M
P

"
S
T
A
R
*

F
i
l
l

i
n

t
h
e

m
i
s
s
i
n
g

k
n
o
w
l
e
d
g
e

c
l
o
u
d
s

f
o
r

t
h
e

C
H
O
M
P

b
r
o
t
h
e
r
s
,

e
o .

o %
%

11
#1

1:
1

°O
W

N
0

?
s
9

?

C
H
O
M
P

b
r
o
t
h
e
r

1

C
H
O
M
P

b
r
o
t
h
e
r

2

o

o
oo

o
o

o
.

A
lit

lf
il

11
1#

11
4

C
H
O
M
P

b
r
o
t
h
e
r

3

C
H
O
M
P

b
r
o
t
h
e
r

4

C
H
O
M
P

b
r
o
t
e
r

5

O r
i V
D

(
R
e
n
e
m
b
e
r
(

D
c
"
'

Y
o
u

c
a
n

T
R
A
C
E

O
bL

T

"
r
i
t
e

a

r
e
c
u
r
s
i
v
e

P
.
o
c
e
d
u
e
m

c
a
l
l
1

'
P
.
O

h
h
i
c
h

f
i
n
d
s

a
n
d

o
u
t
p
u
t
s

a
n
y

l
e
t
t
e
r

4
,

.
3
.
3
.

T
h
e

l
i
n
t

i
n
C
w
t

i
t
r
o
u
l
o

pe
t
h
e

l
e
t
t
e
r
'
s

o
o
s
i
t
4
o
n

f
r
o
.
-

t
-
e

p
e
g
s
n
h
i
n
g

(
1

i
s

t
h
s

f
i
r
s
t

e
t
c
.
)

o
f

t
h
e

.
o
r
d
.

T
h
e

s
e
c
o
h
d

i
n
p
u
t

s
h
e
e
t
:
:

t
o

t
'
e

.
o
r
d

y
o
u

h
a
r
t

t
o

l
o
o
k

I
r
.

I
f

t
h
e

w
o
r
d

i
s

e
n
c
e
t
y

(
E
m
P
T
Y
P

s
c
u
l
l
s

o
u
t
p
u
t

"
T
R
U
E

"
)
.

t
h
s
n

F
I
N
D

o
u
t
p
u
t
s

t
h
e

:
E
-
P
I
Y
:

v
a
l
u
e
.

T
h
i
s

"
e
3
P
S

t
h
a
t

t
h
e

l
e
t
t
e
r

p
o
s
i
t
i
o
n

i
s

(
l
e
s
s

t
h
e
n
.

g
r
e
e
t
e
r

t
h
e
n
.

t
h
e

s
e
-
e

e
s
)
?

t
h
e

l
e
h
o
t
h

o
f

t
h
e

h
o
r
n
.

I
f

t
h
e

l
e
t
t
e
r

Y
O
J

w
a
n
t

i
s

t
*
I
l
l

f
i
r
s
t

f
e
t
t
e
r

(
t
h
e

l
e
t
t
e
r

o
o
s
i
t
i
o
h

i
s

1
)
.

t
n
e
n

y
o
u
r

p
r
o
c
e
d
u
r
e

o
u
t
p
u
t
s

o

O
t
h
e
r
w
i
s
e
.

v
o
t
.
r

p
r
o
c
e
d
u
r
e

s
h
o
u
l
d

(
f
i
l
l

I
n

t
h
e

b
l
s
n
i
c
s
i
i
)

O
U
T
P
U
T

F
I
N
D

b
d

a

p
r
o
c
e
d
u
r
e

t
o

s
e
e

w
h
e
t

i
t
s

i
n
p
u
t
s

e
n
d

o
u
t
p
u
t

a
r
e
.
)

(c
ho

os
e

o
n
e
)

S
t
i
r
l

I
P
O
S
s

1

:
P
D
S
'

"
P
D
S
"

B
F

'
P
D
S
'

D
I
F
F

;
P
o
s
t

(
c
h
o
o
s
e

o
n
e
)

a
F

I
W
O
R
O
S

F

`
W
O
R
D
:

a
L

:
H
O
R
D
:

F

0
4
0
R
D
'

:
W
O
R
D
:

T
y
p
e
s

M
A
K
E

"

A
L
P
H
A
B
E
T
"

"
A
B
C
D
E
F
G
n
I
J
K
L
"
N
O
P
O
R
S
T
U
V
e
X
Y
Z
"

H
A
K
E

"
D
I
S
E
A
S
E
"

"
P
N
E
u
m
O
N
O
U
L
T
R
A
"
I
C
R
O
S
C
O
9
I
C
S
I
L
I
C
O
V
U
L
C
S
N
O
C
3
N
E
O
S
I
S
"

M
A
K
E

"
D
I
G
I
T
S
"

"
X
4
E

T
n
0

T
n
R
E
E

F
O
U
R

F
I
V
E

S
I
X

S
E
V
E
N

E
I
G
H
T

N
I
N
E

T
E
N
"

P

F
I
N
D

2
9

"
S
U
P
E
R
C
A
L
I
F
R
A
G
I
L
I
S
T
I
C
E
x
P
I
A
L
A
D
O
C
I
G
U
S
"

P

F
M
)

1
3

:
A
L
P
H
A
B
E
T
:

P

F
I
N
D

4
0

:
D
I
S
E
A
S
E
:

P

F
I
N
D

8

:
D
I
G
I
T
S
:

P

C
O
U
N
T

"
D
g
A
C
U
L
A
.

P

C
O
U
N
T

:
D
I
S
E
A
S
E
:

P

C
O
u
'
.
T

"
T
H
R
E
E

+
C
M
O
S
"

65
LT

R
e
n
e
h
b
o
r

w
h
e
n

y
o
u

w
r
o
t
e

u
r
o
c
e
d
u
r
e
s

t
o

f
i
n
d

t
h
e

S
E
C
O
N
D

a
n
d

T
H
I
R
D

l
e
t
t
e
r
s

i
n

a

w
o
r
d

(
o
s
r
t

7
)
?

'
n
a
d
i
r
s

w
h
e
t

i
t

w
o
u
l
d

b
e

l
i
k
e

i
f

y
o
u

h
a
d

t
o

f
i
n
d

t
h
e

t
e
n
t
h

o
r

f
i
f
t
i
e
t
h

l
e
t
t
e
r
(

.
s
o
w

d
o

y
o
u

f
i
n
d

t
h
e

f
i
r
s
t

f
l
e
.
"

i
n

w
o
r
d

0
1
,

f
i
r
s
t

.o
rd

I
n

a

s
e
n
t
e
n
c
e
?

C
l
\
-

T
h
e

i
n
p
u
t
s

t
o

C
H
O

H
p

(
p
e
r
t

8
)

w
e
r
e

a
l
w
a
y
s

l
o
s
i
n
g

t
h
e
i
r

f
i
r
s
t

l
e
t
t
e
r
s

a
n
d

g
e
t
t
i
n
g

s
h
o
r
t
e
r
.

E
v
e
n
t
u
a
l
l
y

t
h
e

l
e
t
t
e
r

y
o
u

w
o
n
t
e
d

w
o
u
l
d

s
h
o
w

U
P

a
t

t
h
e

b
e
g
i
n
n
i
n
g

o
f

t
h
e

w
o
r
d
.

D
o

v
o
i
t
n
i
n
k

t
h
a
t

r
e
c
u
r
s
i
v
e

p
r
o
c
e
d
u
r
e
s

c
a
n

o
u
t
p
u
t

v
a
l
u
e
s
?

T
h
e

v
a
l
u
e

t
h
a
t

p
r
o
c
e
d
u
r
e

o
u
t
p
u
t
s

i
s

c
o
n
t
a
i
n
e
d

i
n

t
a
l
k

o
r

o
u
t
o
u
t

"
b
u
b
u
l
e
"
.

H
e
r
e

a
r
e

t
h
e

F
I
N
D

s
i
s
t
e
r
s

w
h
o

c
a
n

f
i
n
d

t
h
e

l
e
t
t
e
r

a
t

a
n
y

p
o
s
i
t
i
o
n

I
n

w
o
r
d

(
o
r

t
h
e

w
o
r
d

i
t

a
n
y

p
c
s
i
t
i
o
n

I
n

s
e
n
t
e
n
c
e
)

e
n
d

t
h
e
n

r
e
p
o
r
t

b
e
c
k

w
h
a
t

t
h
a
t

l
e
t
t
e
r

(
o
r

w
o
r
d
)

l
e
.

F
o
r

e
x
e
m
p
l
a
.

t
h
e
y

c
e
p

t
e
l
l

y
o
u

t
h
e

s
e
c
o
n
d
,

o
r

f
i
f
t
i
e
t
h
e

o
r

'
n
t
h
,
'

l
e
t
t
e
r

(
w
h
e
r
e

n

I
s

a
n
y

n
u
m
b
e
r
)
,

D
o

t
h
e

F
I
N
D

t
a
l
k

b
u
b
b
l
e
s

b
e
l
o
w

c
o
n
t
a
i
n

t
h
e

e
e
r
i
e

O
d
t
O
d
t
?

F
I
N
D

3

'
E
L
E
P
H
A
N
T
"

(
T
h
e

C
O
U
N
T

c
o
e
n
a
n
d

P
u
t
o
u
t
s

h
e
w

T
o
n
y

l
e
t
t
e
r
s
C
7
'
'

a
r
e

i
n

w
o
r
d

o
r

b
o
w

n
i
e
r
l
Y

w
o
r
d
s

a
r
e

i
n

s
e
r
t
e
n
c
e
0

?
O
L
T

M
o
d
i
f
y

E
V
E
I
P

s
o

t
h
a
t

I
t

u
s
e
s

u
E
H
E
I
E
R
P
.

A
S
S
Y
*
e

t
h
a
t

y
o
u

c
a
n
'
t

u
s
e

R
E
M
A
I
N
D
E
R

a
n
y
m
o
r
e
.

N
o
w

e
l
s
e

c
a
n

y
o
u

t
r
1
1

i
f

a

n
u
m
b
e
r

i
s

e
v
e
n
?

%
r
i
t
e

p
r
o
c
e
d
u
r
e

n
A
S
S
i
u
u
S
E
R
P

w
e
l
c
h

o
u
t
p
u
t
s

"
T
R
U
E
"

I
f

i
t
s

i
n
n
u
t

w
o
r
d

h
a
s

O

a
n
y

d
i
g
i
t
s

i
n

i
t
,

a
n
d

"
F
A
L
S
E
'

I
f

I
t
s

i
n
o
u
t

h
a
s

n
o

o
l
g
i
t
s
.

(
H
i
n
t
s

u
s
e

0 z
g

N
u
m
e
L
R
F

o
r

H
E
r
I
B
E
R
P
.
)

I
-
I

O
P

H
A
S
N
u
m
b
E
N
P

'
T
H
R
E
E
"

«
v

c
i
-

F
A
L
S
E

1
-
1

P

H
A
S
N
U
H
S
E
R
P

"
D
O
G
S
"

V
D

T
R
U
E

4 4:- .
.
.

W
r
i
t
s

a

p
r
o
c
e
d
u
r
e

c
e
l
l
o
s

H
A
R
D
U
R
G
E
R
P

w
h
i
c
h

o
u
t
p
u
t
s

"
T
R
U
E
"

I
f

I
t
s

i
n
p
u
t

i
s

t
O

t
h
e

o
a
r
.
,

o
f

a

h
a
m
b
u
r
g
e
r
,

a
n
d

*
F
A
L
S
E
"

i
f

i
t
s

I
n
p
u
t

i
s

n
o
t

h
a
m
b
u
r
g
e
r
.

1
'

(
H
i
n
t
!

u
s
e

H
E
R
B
E
R
P
.
)

C
O
C
O

R g
P

H
A
M
B
U
R
G
E
R
P

"
U
I
G
H
A
C
"

.
.
.
"
:
"

A
A

L
t
A
t
-
-

K
T
R
U
E

,
.
.
.
.
,
.
.
.
.
.
.
:

f
c
)

-1
...

,i
1.

./
-

--
C

)
0

P

H
A
W
S
U
R
G
E
H
P

"
S
O
H
U
S
J
S
C
K
"

T
R
U
E

a.
...

-
Z P

p

H
S
H
O
U
R
G
E
R
P

'
P
I
Z
Z
A
'

F
A
L
S
E

R
e
w
r
i
t
e

1
1
0
0
C
L
P

s
o

t
h
a
t

i
t

u
s
e
s

n
E
m
D
E
R
P
.

Y
o
u
r

p
r
o
c
e
d
u
r
e

o
u
t
p
u
t
s

"
T
R
U
E
'

z
i
:

(
D

i
f

i
t
s

i
n
p
u
t

i
s

a

v
o
w
e
l
s

a
n
d

"
F
A
L
S
E
"

o
t
h
e
r
w
i
s
e
.

W
h
a
t

i
s

t
h
e

s
e
t

o
f

"
.
4 O

l
e
t
t
e
r
s

w
h
i
c
n

a
r
e

v
o
w
e
l
s
?

I
-
I

.
,
.
.
.
.
?
:

F
i
x

P
I
G

(
D
o
l
g

6
0
L

o
n
o

6
0
T
)

s
o

t
h
a
t

a
l
l

l
e
a
d
i
n
g

c
o
n
s
o
n
a
n
t
s

a
r
e

m
o
v
e
d

t
o

t
h
e

r
i
g
h
t

a
n
d

o
f

t
h
e

w
o
r
d

b
e
f
o
r
e

a
d
d
i
n
g

"
A
Y
"
.

(
H
i
n
t
'

i
f

b
o
t
h

t
h
e

f
i
r
s
t

a
n
d

s
e
c
o
n
d

l
e
t
t
e
r
s

a
r
s

c
o
n
s
o
n
a
n
t
s
,

y
o
u

c
a
n

m
o
v
e

t
h
e

f
i
r
s
t

l
e
t
t
e
r
,

a
n
d

t
h
a
n

u
s
e

t
h
e

P
I
G

p
r
o
c
e
d
u
r
e

r
e
c
u
r
s
i
v
e
l
y
)
.

I
f

t
h
e

i
n
p
u
t

w
o
r
d

c
o
n
s
i
s
t
s

o
f

a
l
l

c
o
n
s
o
n
a
n
t
s
,

w
h
a
t

h
o
o
t
:
m
e
t
e
?

ba
LT

w
r
i
t
e

a

r
e
c
u
r
s
i
v
e

u
r
o
c
e
d
u
r
e

(
c
a
l
l
e
r
s

w
E
4
S
E
R
P

o
r

1
5
1
4
)

w
h
i
c
h

h
a
s

t
w
o

i
w
o
o
t
s

a
w
d

o
u
t
a
v
t
s

"
T
4
9
E
"

i
f

t
m
e

f
i
r
s
t

i
n
p
u
t

i
s

i
n
c
l
u
d
e
d

I
n

(
o
r

i
s

s

s
o
m
b
e
r

0

t
m
e

s
e
t

w
h
i
c
n

I
s
)

t
h
e

s
e
c
o
n
d

I
n
p
u
t
.

F
o
r

e

x

a
a
a

1
0
,

T
O

m
E
n
e
i
R
0

I
E
L
C
w
i
h
T
s

i
S
E
T
:

O
r

T
O

I
S
I
N

I
T
H
I
S
I

!
T
H
E
S
E
'

P

H
E
n
0
E
R
P

"
7
"

"
A
u
C
D
E
F
H
"

F
A
L
S
E

P

R
E
M
S
E
R
P

"
A
P
P
L
E
"

"
A
P
R
I
C
O
T

O
R
A
N
G
E

A
P
P
L
E

C
H
E
R
R
Y
"

J
T
R
U
E

H
e
r
a

a
r
e

t
h
e

H
L
H
E
I
E
4
P

b
r
o
t
h
e
r
s
,

k
n
o
w
l
v
d
g

c
l
o
u
d
s

a
n
d

t
a
l
k

b
u
b
b
l
e
s
.

H
E
H
N
E
R
P

"
U
"

"
B
L
U
E
"

go
'

go
: ?

s
gj

,
.

7
a
L
T

I
n

t
h
e

"
m
0
0
4
r
n

R
o
a
n

s
y
s
t
e
m
,

s

n
u
m
b

i
s

a
l
s
o

e
o
u
e
n
c
e

o
f

M
i
s
r

D
'
5
,

C
o
s
,

O
s
,

X
I
I
I
,

V
'
s
,

a
n
d

I
'
s
,

T
h
a

s
y
m
b
o
l
s

h
a
v
e

t
o

0
0
O
4
?

M
O
P
S

o
r

l
e
s
s

I
n

t
h
a
t

o
r
o
e
r

a
n
d

t
h
e

v
a
l
u
e

o
f

n
u
m
b
e
r

I
s

o
b
t
a
i
n
e
d

J
u
s
t

a
s

I
n

t
h
e

"
o
l
d
"

R
o
m
a
n

s
y
s
t
e
m

e
x
c
e
p
t

w
h
e
n

a

s
y
m
b
o
l

C
.

X
,

o
r

I

O
P
O
C
O
O
S

y
m
o
o
l

o
f

h
i
g
h
e
r

C
D 0

v
a
l
u
e
.

I
n

t
h
a
t

c
a
s
e
,

t
h
e

v
a
l
u
e

o
f

t
h
a
t

s
y
m
b
o
l

C
.

X
.

o
r

I

i
s

t
a
k
e
n

t
o

b
e

i
l
l

'
.
.
4

n
e
g
a
t
i
v
e
.

F
o
r

e
x
e
g
e
t
e
.

I
-
4

R
e
c
e
r
t

d
i
s
c
o
v
e
r
i
e
s

b
y

P
r
o
f
e
s
o
r
a

U
r
s
u
l
a

d
e

L
0
0
0

o
n

t
h
e

p
l
a
n
e
t

G
Q

d
e
c
i
m
a
l

'
o
l
d
°

R
a
m
a
n

"
m
o
d
e
r
n
"

R
o
n
a
n

c
i
-

h
a
z
z
e
n
e
r
z

3

i
n
d
i
c
a
t
e

t
h
a
t

t
h
e

U
r
s
i
n
o
i
d

i
n
h
a
b
i
t
a
n
t
s

(
t
h
e
y

l
o
o
k

1
1
k
,

I
-
a

b
e
a
r
s
)

d
o

n
o
t

k
n
o
w

h
o
w

t
o

d
f
v
f
o
e

b
y

t
h
r
e
e

I
n

t
h
e

s
a
m
e

w
a
y

t
h
a
t

h
u
m
a
n
s

V
D

4
1
1
1
1

I
V

4
d
o
.

I
n
s
t
e
a
d
.

'
t
h
e

u
r
s
l
n
o
l
d
s

c
l
a
i
m

t
h
a
t

i
f

t
h
e

s
u
m

o
f

a
l
l

t
h
e

d
i
g
i
t
s

i
n

e
-

9
V
I
I
I
I

I
X

a

n
u
m
b
e
r

i
s

o
l
v
l
s
l
b
l
e

b
y

t
h
r
e
e
.

t
h
e
n

t
h
e

n
u
m
b
e
r

i
t
s
e
l
f

I
s

d
i
v
i
s
i
b
l
e

b
y

3

>
0
1

X
C
I

L
X
X
X
X
I

(
F
o
r

e
x
a
m
p
l
e
.

3
3

I
s

o
f
v
f
s
t
b
l
e

b
y

3

b
e
c
a
u
s
e

3

3
I
s

d
i
v
i
s
i
b
l
e

b
y

3
)
.

t
d

.
I
f

t
h
e

d
i
g
i
t

s
u
m

I
s

n
o
t

d
i
v
i
s
i
b
l
e

b
y

t
h
r
e
e
,

t
h
e
n

t
h
e

n
u
m
b
e
r

i
s

n
o
t

I
-
4

e
r
n
e

4

p
r
o
c
e
d
u
r
e

t
o

c
o
n
v
e
r
t

b
o
t
h

"
o
l
d
"

a
n
d

"
m
o
d
e
r
n
"

R
a
m
a
n

C
O

d
i
v
i
s
i
b
l
e

b
y

t
h
r
e
e
.

P
l
e
a
s
e

a
n
s
w
e
r

"
T
R
U
E
"

o
r

"
F
A
L
S
E
'

i
n

t
h
e

b
l
a
n
k
s

b
e
l
o
w
l

n
u
m
e
r
a
l
s

I
n
t
o

d
e
c
i
m
a
l

n
u
m
b
e
r
s
.

F
o
r

e
x
a
m
p
l
e
,

.
V
D

7
2
L
T

w
r
i
t
e

c
r
o
c
t
o
u
r
e

w
h
i
c
h

o
u
t
p
u
t
s

t
h
e

s
u
m

o
f

a
l
l

o
f

t
h
e

d
i
g
i
t
s

I
n

a
n

I
n
p
u
t

w
o
r
o

(
o
r

n
u
m
b
e
r
s

i
n

e
n

i
n
p
u
t

s
e
n
t
e
n
c
e
)
.

P

S
A
D
D

0
5

e

7

9
'

2
7

S
A
D
D

0
9
9
1
"

2
1

F
$ P ,

-
-
S

P

U
N
R
O
M
A
N

"
X
X
V
°

.
.
.
.
1
.
)

M
2
5

-.
..)

m z
P

U
N
R
O
M
A
N

"
C
X
I
V
"

g
l
.

1
1
9

C
O

w
r
i
t
e

a

p
r
o
c
e
d
u
r
e

t
o

c
o
n
v
e
r
t

d
e
c
i
m
a
l

n
u
m
b
e
r
s

I
n
t
o

"
o
l
d
"

(
*
c
o
s
y
)

o
r

'
,
m
o
d
e
r
n
'

(
h
a
r
d
e
r
)

R
o
m
a
n

n
u
m
e
r
a
l
s
,

z
E
:

P

R
O
M
A
N

3
7

P

R
O
M
A
N

3
7

X
X
X
Y
I
I

X
X
X
V
I
I

:
1

P

R
O
M
A
N

1
9
9

P

R
O
M
A
N

1
9
9

C
L
X
X
X
X
V
I
I
I
I

C
I
C

d
i
v
i
s
i
b
l
e

b
y

3
?

d
i
v
i
s
i
b
l
e

b
y

3
7

3
7

5
7

3
7

e

1
0

7

P

1
2

5

4
.

1
.

0

1
1

1
1

+

2

2

3

* 1
0
5

1
0

5

s

9
9
9

9
9

9

s

2
7

Y
o
u

c
a
n

h
e
l
p

U
r
s
u
l
a

t
e
s
t

t
h
e

U
r
s
i
n
o
i
d

t
h
e
o
r
y

b
y

w
r
i
t
i
n
g

t
w
o

p
r
o
c
e
d
u
r
e
s

w
h
i
c
h

o
u
t
p
u
t

"
T
R
U
E
"

I
f

a

n
u
m
b
e
r

I
s

d
i
v
i
s
i
b
l
e

b
y

3

e
n
d

o
u
t
p
u
t
s

'
F
A
L
S
E
"

I
f

n
o
t
.

T
h
e

f
i
r
s
t

p
r
o
c
e
d
u
r
e

c
a
n

u
s
e

t
h
e

r
e
g
u
l
a
r

E
a
r
t
h

m
e
t
h
o
d
,

w
h
i
c
h

i
s

t
h
e

c
o
m
m
e
n
d
.

T
h
e

s
e
c
o
n
d

p
r
o
c
e
d
u
r
e

s
h
o
u
l
d

u
s
e

t
h
e

'
f
a
l
s
e
n
e
s
s

m
e
t
h
o
d

(
n
o

Q
U
O
T
I
E
N
T
,

D
I
V
I
S
I
O
N
.

o
r

R
E
M
A
I
N
D
E
R

c
o
m
m
a
n
d
s

a
l
l
o
w
e
d
1
3

(
M
i
n
t
l

a
s
k
s

t
h
i
s

p
r
o
c
e
d
u
r
e

r
e
c
u
r
s
i
v
e
.

u
s
e

S
A
D
O

t
o

a
d
d

t
h
e

0
1
0
1
1
0
,

e
n
d

P
a
r
t

1
0

7
o
L
T

7
5
L
T

I
n

o
u
r

e
f
f
o
r
t
s

t
o

c
o
m
m
u
n
i
c
a
t
e

w
i
t
h

t
h
e

c
r
e
a
t
u
r
e
s

o
n

t
h
e

p
l
a
n
e
t

M
i
r
r
o
r
,

w
e

h
a
v
e

G
'
c
o
v
e
r
e
d

t
h
a
t

t
h
o

M
i
r
r
o
r
i
a
n
s

r
a
v
e

t
o

r
e
a
d

o
u
r

m

s
s
s
s

p
a
s

S
y
m
h
o
l

C
o
i
n

n

.
,

v
a
l
u
e

i
n

c
e
n
t
s

H
i
p
s

i
s

a

n
u
^
b
o
r
i
n
0

S
V
e
t
t

b
a
s
e
d

o
n

U
.
S
.

c
o
i
n
s
!

b
a
c
k
w
a
m
e
s

a
n
d

w
e

h
a
v
e

t
o

r
e
a
d

t
h
e
i
r

m
e
s
s
a
g
e
s

b
a
c
k
w
a
r
d
s
.

T
o

a
i
d

i
n

H
h
a
l
f

°
e
l
l
e
r

5
0

i
n
t
a
r
C
a
l
a
c
t
i
c

f
r
i
e
n
d
s
h
i
p
/

w
r
i
t
e

a

p
r
o
c
e
d
u
r
e

(
c
a
l
l
e
d

R
E
V
E
R
S
E
)

t
o

r
e
v
e
r
s

O
Q
u
a
r
t
e
r

2
5

w
o
r
d
.

F
o
r

e
x
a
m
p
l
e
s

O
d
i
e
.

1
0

P

R
E
V
E
R
S

'
E
L
E
P
H
A
N
T
'

P

R
E
V
E
R
S
E

'
B
A
C
K
W
A
R
D
S
'

I
N
A
H
P
E
L
E

S
O
R
A
W
X
C
A
B

N
n
i
c
k
e
l

5

P

R
E
V
E
R
S
E

'
S
U
M
M
E
R
'

P

R
E
V
E
R
S
E

'
E
S
R
E
V
E
R
'

F
P
e
n
n
y

1

R
E
M
M
U
S

R
E
V
E
R
S
E

A
s

u
s
u
a
l
,

t
h
e
r
e

a
r
e

s
e
v
e
r
a
l

w
a
y
s

t
o

w
r
i
t
e

t
h
o

R
E
V
E
R
S
E

p
r
o
c
e
d
u
r
e

s
i
n
e
s

Y
o
u

c
a
n

s
t
a
r
t

a
t

e
i
t
h
e
r

a
n
d

o
f

t
h
i
s

w
o
r
d
,

H
e
r
e

i
s

o
n
o

f
a
m
i
l
y

o
f

R
E
V
E
R
S
E

b
r
o
t
h
e
r
s

a
n
d

t
h
e
i
r

k
n
o
w
l
e
d
o
e

c
l
o
u
d
s

a
n
d

t
a
l
k

b
u
b
b
l
e
s
.

R
E
V
E
R
S
E

'
C
A
T
'

W

r
i
t
e
.

p
r
o
c
e
d
u
r
e

t
h
a
t

c
o
n
v
e
r
t
s

C
r
o
u
p

o
f

c
o
i
n
s

i
n
t
o

t
h
e

c
o
r
r
e
c
t

N
u
m
b
e
r

o
f

c
e
n
t
s
.

P

M
O
N
E
Y

"
M
O
O
"

P

M
O
N
E
Y

'
P
I
P
P
O
)
"

6
5

w
r
i
t
e

b
r
o
c
e
d
u
r
e

t
h
a
t

c
o
n
v
e
r
t
s

c
e
n
t
s
'
i
n
t
o

a

g
r
o
u
p

o
f

c
o
i
n
s

w
h
i
c
h

r
e
p
r
e
s
e
n
t

t
h
e

s
a
m
e

a
m
o
u
n
t

o
f

m
o
n
e
y
.

S
i
n
c
e

t
h
e
r
e

a
r
e

s
o
m
e
t
i
m
e
s

s
e
v
e
r
a
l

g
r
o
u
p
s

o
f

c
o
i
n
s

t
h
a
t

a
r
e

w
o
r
t
h

t
h
e

s
c
:
s
e

a
m
o
u
n
t

o
f

m
o
n
e
y
,

.
-
-
-

-
-
-
7
1

l
i

-
-
-
z
.
.
.
.
.
)

0

.
-
-
-
-

u
s
e

a
s

f
e
w

c
o
i
n
s

a
s

p
o
s
s
i
b
l
e
.

F
o
r

e
x
a
m
p
l
e
s

6
9

c
e
n
t
s

i
s

b
e
t
t
o
r

"
-
-
c
-
-

.
.
.
-
.
.
.
.

-
-

'
"

*
*
-
-
-
-
-
.
.
/
-

-
e
s

.
.
.
.
.
1
.
=
=
-

'
"
"

.
.
.
.
.

-
-
-

/
I
'

A
r
e
p
r
e
s
e
n
t
e
d

b
y

m
G
O
O
P
P
P
P

t
h
a
n

b
y

P
P
P
P
P
P
P
P
P
P
P
P
P

P

(
9
9

P
i
s
)
.

P

C
H
A
N
G
E

1
0
7

P

C
H
A
N
G
E

4
6

H
M
N
P
P

C
O
O
P

U
s
e

E
n
o
l
i
s
h

a
s

n
u
m
b
e
r
P
n
g

s
y
s
t
e
m

a
n
d

w
r
i
t
e

p
r
o
c
e
d
u
r
e
s

t
o

t
r
a
n
s
l
a
t
e

w
o
r
d
s

i
n
t
o

n
u
m
b
e
r
s

a
n
d

n
u
m
b
e
r
s

i
n
t
o

w
o
r
d
s
.

e
a
s
y

h
a
r
d
e
r

P

E
N
G
L
I
S
H

1
2
3

P

E
N
G
L
I
S
H

1
2
3

O
N
E

T
W
O

T
H
R
E
E

O
N
E

H
U
N
D
R
E
D

T
W
E
N
T
Y

T
H
R
E
E

P

N
U
M
B
E
R

'
O
N
E

F
I
V
E

S
I
X

T
A
O
'

1
5
6
2

P

N
U
M
B
E
R

"
O
N
E

T
H
O
U
S
A
N
D

F
I
V
E

H
U
N
D
R
E
D

A
N
D

S
I
X
T
Y

7
.
0
"

1
5
6
2

7
2
3
L
T

T
h
e

a
i
r
d
m
l
i
k
a

C
r
e
a
t
u
r
e
s

o
n

A
v
i
a
r
y

2

s
p
e
a
r

t
o

e
a
c
h

o
t
h
e
r

i
n

P
o
l
i
n
g
r
o
e
s
.

P
e
l
(
n
d
r
o
.
e
s

a
r
e

s
e
n
t
e
n
c
e
s

t
h
a
t

r
e
a
d

t
h
e

s
a
m
e

b
a
c
k
w
a
r
d
s

o
r

f
o
r
m
a
r
c
s
.

M
e
r
e

a
r
e

s
o
n
e

e
x
a
m
p
l
e
s

a
o
n
a
t
e
c

b
y

t
h
a
t

c
a
n
c
e
r
o
u
s

d
u
o
,

B
a
t
m
a
n

a
n
d

R
e
g
i
n

(
w
h
o

c
o
n
s
i
d
e
r

t
h
e
m
s
e
l
v
e
s

d
i
s
t
a
n
t

r
e
l
a
t
i
v
e
s

o
f

t
h
e

A
i
/
l
e
p
t
o
n
s
)
.

A

M
A
N

A

P
E
A
A

A

C
A
N
A
L

P
A
N
A
M
A

A
B
L
E

W
A
S

I

E
R
E

I

S
A
W

E
L
S
A

{
s
a
i
d

b
y

N
a
P
e
c
o
n
T
)

E
I
N

N
E
G
E
R

M
I
T

G
A
Z
E
L
L
E

Z
4
G
T

T
M

R
E
G
E
N

N
I
E

C
G
e
r
m
a
n
i
)

B
a
t
m
a
n

a
n
d

R
o
b
i
n

o
r
e

p
l
a
n
n
i
n
g

a

t
r
i
p

t
o

A
v
i
a
r
y

2

b
u
t

c
o
u
l
d

f
i
n
d

n
o

f
o
r
e
i
g
n

l
a
n
g
u
a
g
e

b
o
o
k
s

w
h
i
c
h

c
a
n

t
e
l
l

t
h
e
m

w
h
e
t
h
e
r

o
r

n
o
t

c
e
r
t
a
i
n

p
h
r
a
s
e
s

a
r
e

p
a
l
i
n
d
r
o
m
e
s
.

W
r
i
t
e

a

L
o
g
o

P
r
o
c
e
d
u
r
e

w
h
i
c
h

w
i
l
l

t
e
l
l

t
h
e
m

w
h
e
t
h
e
r

o
r

n
o
t

o

g
i
v
e
n

s
e
n
t
e
n
c
e

i
s

a

P
a
l
i
n
d
r
o
m
e
.

C
m
i
n
t
S

u
s
e

Y
e
U
r

G
R
W
.
G
M

a
n
d

R
E
V
E
R
S
E

p
r
o
c
e
d
u
r
e
s
.
)

P

P
A
L
I
N
D
R
O
M
E

"
P
A
L
I
N
D
R
O
M
E
"

F
A
L
S
E

M
P

F
I
L
I
N
O
R
O
M
E

"
M
A
D
A
M

I
K

A
D
A
M
"

T
R
U
E

C
I

4:
71

;.1
.7

17
7,

;3
:7

,7
-1

,i
.
1
1
.
.
.
:
\.

.

r

e;
,,,

,:,
V

"-
-.

..p
e

1

O
. :

...
,

04

7
7
L
T

M
e
r
e

i
s

a

f
a
^
i
l
y

o
f

R
E
V
E
R
S
E

s
i
s
t
e
r
s
.

R
E
V
E
R
S
E

"
C
A
T
"

vw
,-

m
-3

0m
vw

\9
(1

7,
1i

;v
i(

-)
6/

3
uo

)
)

I
n

b
o
t
h

o
f

t
h
e
s
e

R
E
V
E
R
S
E

p
r
o
c
e
d
u
r
e
s
,

i
f

t
h
e

i
n
p
u
t

i
s

e
m
p
t
y
,

y
o
u
r

R
E
V
E
R
S
E

p
r
o
c
e
d
u
r
e

o
u
t
p
u
t
s

I
f

t
h
e

i
n
p
u
t

i
s

n
o
t

e
m
P
t
Y
s

y
o
u
r

R
E
V
E
R
S
E

r
e
m
o
v
e
s

a

l
e
t
t
e
r

f
r
o
m

o
n
e

e
n
d

o
f

t
h
e

i
n
p
u
t

a
n
t
i

g
l
u
e
s

i
t

t
o

t
h
e

r
e
s
t

o
f

t
h
e

r
e
v
e
r
s
e
d

w
o
r
d
.

T
r
y

i
t
,

T
R
A
C
E

i
t
,

a
n
d

t
a
l
k

t
o

t
u
t
o
r

i
f

y
o
u

g
e
t

s
t
u
c
k
.

S
i
n
c
e

t
h
e

M
i
r
r
o
r
i
a
n
s

l
i
k
e

t
o

s
p
e
a
k

i
n

s
e
n
t
e
n
c
e
s
/

w
r
i
t
e

?"
.

l
D

c.
4

F
i

,
1

.-
, I

P
r
o
c
e
d
u
r
e

w
h
i
c
h

r
e
v
e
r
s
e
s

a
n

e
n
t
i
r
e

s
e
n
t
e
n
c
e
.

P

R
E
V
S

'
P
E
A
N
U
T

B
U
T
T
E
R

B
U
T

N
O

J
E
L
L
Y
"

Y
L
L
E
J

O
N

T
U
B

R
E
T
T
U
B

T
U
N
A
E
P

P

R
E
V
S

"
R
E
V
S

N
E
E
D
S

A

M
E
A
N
I
N
G
"

G
N
I
N
A
E
M

A

S
O
E
E
N

S
V
E
R

c
a
n

y
o
u

t
h
i
n
s

o
f

a
n
y

o
t
h
e
r

p
a
l
i
n
c
r
o
.
-
e
s
?

R
A
T
S

A

S
T
A
R
"

Y
o
u

r
u
s
t

r
e
v
e
r
s
e

b
o
t
h

t
h
e

p
o
s
i
t
i
o
n
s

o
f

t
h
e

w
o
r
d
s

I
n

t
h
e

s
e
n
t
e
n
c
e

a
n
d

t
h
e

w
o
r
d
s

t
h
e
m
s
e
l
v
e
s
.

F
o
r

e
x
a
m
p
l
e
.

"
J
E
L
L
Y

N
O

B
U
T

B
U
T
T
E
R

P
E
A
N
U
T
"

i
s

o
n
e

w
a
y

t
o

r
e
v
e
r
s
e

t
h
e

s
e
n
t
e
n
c
e

"
P
E
A
N
U
T

B
U
T
T
E
R

B
U
T

N
O

J
E
L
L
Y
'

b
u
t

n
o
t

t
h
e

w
a
y

t
h
e

M
i
r
r
o
r
i
a
n
s

t
a
l
k
.

I
V

V
P
a

w
h
i
c
h

g
i
v
e
.
:

d
i
r
e
c
t
i
o
n
s

t
o

t
h
e

t
u
r
t
l
e

a
b
o
u
t

h
o
w

t
o

g
o
t

t
o

a

s
q
u
a
r
e

S
a
d

C
Y

f
a
,

t
h
e
n

u
s
e

y
o
u
r

D
R
A
W

p
r
o
c
e
d
u
r
e
.

F
o
r

e
x
a
m
p
l
e
s

C
O

M
A
X
!

"
S
0
1
0

4
U

F
1
0
0

L
9
0

F
3
0
0
"

A
R
K
E

"
S
O
2
"

o
U

F
2
0
0

L
9
0

F
3
0
0
"

8
0
T

T
p
e
r
e

1
:

a

g
a
m
e

i
n
v
e
n
t
e
d

b
y

s
o
o
n

,
:
e
s

o
n

t
s
e

o
l
a
n
o
t

L
c
:
b
a
g
o

A
s
k
%

1
s

c
a
f
e
s

T
i
a
t
l
e
t
o
t
a
.

K
O

n
a
v
e

n
o
o
n

g
i
v
e
n

d
r
a
w
i
n
g
s

o
f

t
h
e

b
o
a
r
d

a
m
d

v
a
m
1
o
.
s

p
r
i
o
r
s

(
c
a
l
l
o
d

"
X
"

a
n
d

"
0
"
)

w
h
i
c
h

a
r
e

p
l
a
c
e
d

o
n

t
h
e

b
o
a
r
d

a
l
t
o
-
m
a
t
:
1
y

b
y

t
w
o

p
l
a
y
e
r
s
.

T
m
o

r
u
t
*
:

l
o
o
k

e
x
a
c
t
l
y

1
1
k
o

t
e
e

E
a
r
t
h

g
a
m
e

o
f

T
i
c
h
t
a
c
A
t
o
e
,

"
r
i
t
e

a

p
r
o
c
e
d
u
r
e
s

t
o

d
r
a
w

t
h
e

T
u
r
t
l
e
t
o
e
s

b
o
a
r
d

a
n
d

C
3 0 to

a
n
o
t
h
e
r

P
r
o
c
e
d
u
r
e

t
o

P
l
a
c
e

a

m
a
r
k
e
r

i
n

a

s
q
u
a
r
e
.

1
-
4

C
l
Q

D
R
A
h
B
D
A
R
D

D
>

b
d

2
3

a
t

6

7

7
0
T

m
i
t
e

a

t
u
r
t
l
o

o
r
o
c
o
o
g
r
e

w
h
i
c
h

d
r
a
w
s

a

p
i
c
t
u
r
e

f
r
o
m

a

c
o
s
c
r
i
o
t
l
e
n

o
l
v
o
l

C
y

i
t
s

I
n
p
u
t
,

F
o
r

e
x
a
m
p
l
e
,

O
R
L
I
%

I
D

F
1
0
0

R
9
0

F
1
0
0

R
O
D

F
l
I
O

R
9
0

F
1
0
0

R
9
0

U
l

T
f
t
c

i
R
A
4

O
P
O
C
O
O
J
f
e

t
r
a
n
s
l
a
t
e
s

e
a
c
h

o
f

t
.
c
s
o

c
o
n
m
a
n
o
s

i
n
t
o

t
h
o
s
e

t
u
r
t
l
o

c
o
m
m
e
n
d
s
,

(
o
r

r
a
c
e

u
'

y
o
u
r

o
w
n
(
)

P
U
T
M
A
R
<
E
R

'
X
"

\
.
/

2
P
U
T
H
A
R
K
E
R

"
0
"

5
P
E
b
D
O
W
N

U
P
E
N
U
P

F

f
o
l
l
o
w
e
d

b
y

a
'
n
u
m
b
e
r

F
R
O
N
T

t
h
a
t

n
u
m
b
e
r

R

f
o
l
l
o
w
c
o

b
y

a

n
u
m
b
e
r

R
I
G
H
T

t
h
a
t

n
u
m
b
e
r

e
t
c
,

5
D

P
1
0
0

R
9
0

F
1
0
0

R
9
0

F
1
8
0

R
9
0

F
1
0
0

R
9
0

U
"

e
t
c
,

S
o

i
n

t
h
e

o
x
a
n
o
l
e
i

D
R
A
W

w
o
u
l
d

d
r
e
w

o

S
i
n
c
e

y
o
u

a
r
e

i
n
v
e
n
t
i
n
g

a

n
o
w

l
a
n
g
u
a
g
e
s

Y
o
u

C
h
i
n
t
z

Y
O
U

s
h
o
u
l
d

a
l
w
a
y
s

m
o
v
e

t
h
e

t
u
r
t
l
o

b
a
c
k

t
o

t
h
e

c
a
m
e

r
e
s
t
i
n
g

*
-
3

O
D

p
o
i
n
t
.

Y
o
u

c
a
l

m
a
k
e

s
o
m
e

n
a
m
e
s

w
h
i
c
h

h
a
v
e

c
i

t
h
o
l
e

v
a
l
u
e
s
,

s
e
n
t
e
n
c
e

d
i

c
4
C
D

I
f

I
X
W
E
R
E
T
O
1

c
o
n
t
a
i
n
s

t
h
e

n
u
m
b
e
r

o
f

t
h
e

s
q
u
a
r
e

y
o
u

w
a
n
t
)

t
h
e
n

*
-
3

D
R
A
4

T
P
I
I
P
4

C
F

h
O
R
O

O
F

"
S
O
"

A
N
D

i
W
N
E
R
E
T
O
I

m
o
v
e
s

t
h
e

t
u
r
t
l
e

t
o

t
h
e

S
O
W
4
P
1
1

w
h
e
r
e

y
o
u

w
a
n
t

t
o

p
u
t

a
n

5
X
"

o
r

8
0
1
1
.

Y
o
u

c
a
n

r
e
t
u
r
n

t
h
e

t
u
r
t
l
e
-
t
o

i
t
s

r
e
s
t
i
n
g

p
o
i
n
t

b
y

u
s
i
n
g

D
R
A
W

w
i
t
h

a
n
o
t
h
e
r

s
e
t

o
f

n
a
m
e
s

(
l
i
k
e

R
7
1
,

R
T
2
,

e
t
c
.
)

o
r

a

P
i
c
1

t
u
r
e

r
o
v
o
r
i
i
n
g

c
r
o
:
c
d
.
r
e

(
w
n
i
c
h

y
o
u

c
a
r
a
t

q
u
i
t
s

d
o

y
e
t
)

o
r

b
y

u
s
i
n
g

"
h
o
r
s
.
"

a
s

t
h
e

r
e
s
t
i
n
g

p
o
i
n
t
.

n
a
y

w
a
n
t

t
o

g
i
v
e

y
o
u
r

o
w
n

e
r
r
o
r

m
a
s
s
a
g
e
r
s
.

D
R
A
W

"
X
Y
Z

2
0
0
"

X
Y
Z

I
S

A
N

U
\
K
N
O
A
N

C
O
M
M
A
N
D

D
R
S
.
.
:

"
1
8
0

Z
O
O
'

1
0
0

I
S

N
O
T

A

C
O
P
I
M
A
N
O

B
Y

I
T
S
E
L
F

D
R
A
W

"
F
A
B
C

U
"

A
B
C

C
A
\
N
O
T

5
E

A
N

I
N
P
U
T

F
O
R

F
R
O
N
T

(
a
l
t
h
o
u
g
h

y
o
u

n
a
y

w
a
n
t

t
o

f
i
x

D
R
A
k

s
e

t
h
a
t

i
t

u
s
e
s

I
A
B
C
I
)

S
i
n
c
e

y
o
u

a
r
e

r
e
p
r
e
s
e
n
t
i
n
g

a

p
i
c
t
u
r
e

a
s

a

s
e
n
t
e
n
c
e
s

y
o
u

c
o
u
l
d

"
r
e
v
e
r
s
e
"

a

p
i
c
t
u
r
e

b
y

C
h
a
n
g
i
n
g

t
h
e

p
o
s
i
t
i
o
n
s

o
f

t
h
e

c
o
m
m
a
n
d
s

(
w
o
r
d
s
)

i
n

t
a
e

p
i
c
t
u
r
e

(
s
e
n
t
e
n
c
e
)
.

I
n

a

l
i
t
t
l
e

w
h
i
l
e
s

y
o
u

w
i
l
l

l
e
a
r
n

h
e
w

t
o

f
i
n
i
s
h

r
e
v
e
r
s
i
n
g

t
h
e

p
i
c
t
u
r
e

b
y

r
e
p
l
a
c
i
n
g

t
h
e

l
i
t
t
e
r

"
B
"

b
y

I
F
"
,

"
L
I

c
v

"
R
"

e
t
c
,

8
2
L
T

8
1
L
T

I
f

V
i
e

l
e
t
t
e
r

i
n

t
h
e

w
o
r
e

y
e
.
;

a
r
e

l
o
o
k
i
n
d

a
t

i
c
y

n
o
t

o
n
e

Y
e
t
i

w
a
i
t

i
s

r
e
p
l
a
c
e
,

t
h
e
n

y
o
u

s
h
e
4
l
d

k
r
i
t
o

a

p
r
o
c
e
d
u
r
e

w
h
i
c
h

r
e
p
l
a
c
e
s

o
n
e

l
e
t
t
e
r

b
y

a
n
o
t
h
e
?

l
e
t
t
e
r

(
o
r

w
o
r
e
)

i
n

w
o
r
d
.

T
O

R
E
P
L
A
C
E

i
T
H
I
S
:

:
B
Y
,
T
H
I
S
t

:
I
N
,
T
H
I
S
:

i
n

t
h
e

r
e
s
t

0
'
.
.
T
P
U
T

N
O
R
D

O
F

.
.

A
N
D

I

y
o
u

f
i
l
l

C
2

(
c
h
o
o
s
e

o
n
o

f
r
o
m

(
c
h
o
o
s
e

o
n
e

f
r
o
m

0
t
h
e

l
i
s
t

o
n

t
h
e

t
h
e

l
i
s
t

o
n

t
h
e

E
N
D

P

R
E
P
L
1
0
E

1
-
4

l
a
s
t

P
a
g
e
)

l
a
s
t

P
a
g
e
)

F
O
O
D

Q
C

e
f
-

\
0
0
1

L
o
g
o

I
s

m
o
r
e

P
o
w
e
r
f
u
l

t
h
a
n

C
a
p
t
a
i
n

M
i
d
n
i
g
h
t

d
e
c
o
d
e
r

w
h
e
e
l

4
f
o
r

s
e
c
r
e
t

m
e
s
s
a
g
e
s
.

Y
o
u

c
a
n

n
o
t

o
n
l
y

r
e
v
e
r
i
e

w
o
r
d
s
,

a
n
d

n
o
v
a

l
e
t
t
e
r
s

D
a
r
o
u
n
d
,

b
u
t

a
l
s
o

r
e
p
l
a
c
e

l
e
t
t
e
r
s

i
n

w
o
r
d
s

b
y

o
t
h
e
r

l
e
t
t
e
r
s
,

W
r
i
t
.

a

p
r
o
c
e
c
u
r
e

t
o

t
r
a
n
s
l
a
t
e

a

w
o
r
d

f
r
o
m

o
n
e

c
o
o
s

t
o

a
n
o
t
h
e
r
,

b
d

'
0

C
2

M
A
K
E

"
A
B
E
T
"

"
A
B
C
D
E
F
G
H
/
J
K
L
M
N
O
P
O
R
S
T
U
Y
W
X
Y
Z
"

W
i
n

M
A
K
E

"
C
O
D
Y
"

N
O
N
E
R
T
Y
U
I
G
P
A
S
D
F
G
H
J
K
L
U
M
N
M
"

C
s

C
s

T
O

C
O
D
E

t
W
R
D
I

:
A
L
P
H
A
B
E
T
:

:
C
O
D
E
:

C
s

y

y
o
u

f
i
g
u
r
e

o
u
t

t
h
e

r
e
s
t

E
N
D

c
n

P

C
O
D
E

"
W
A
T
E
R
G
A
T
E
"

t
A
B
E
T
I

I
C
G
D
I
:

Y
O
I
T
K
U
C
L
T

m
E

P

C
O
D
E

"
I
M
E
T
K
U
O
Z
T
"

:
C
O
D
Y
:

:
A
B
E
T
:

e
4

W
A
T
E
R
G
A
T
E

l
D

T
h
e

f
i
r
s
t

!
n
e
w
t

t
o

y
o
u
r

C
O
D
E

P
r
o
e
e
c
u
r
e

s
h
o
u
l
d

b
e

t
h
e

w
o
r
d

y
o
u

w
a
n
t

e
n
c
o
d
e
s

o
r

d
o
c
e
s
e
c
,

T
h
e

s
e
c
o
n
d

a
n
d

t
h
i
r
d

i
n
P
U
t
s

a
r
e

t
h
e

l
e
t
t
e
r
s

o
f

t
h
e

a
l
p
h
a
b
e
t

a
n
d

t
h
e
i
r

c
o
r
r
e
s
p
o
n
d
i
n
g

c
o
d
e
s
.

F
o
r

e
x
a
n
o
l
e
s

I
t
"

i
s

t
o

b
e

c
o
o
e
d

a
s

"
0
"
,

"
E
l
"

a
s

1
1
0

e
t
c
.

Y
o
u
r

C
O
D
E

p
r
o
c
e
d
u
r
e

w
o
u
l
d

t
h
e
n

"
0
"

"
F
E
E
D
"

P

R
E
P
L
A
C
E

*
A
"

"

.
"
A
B
R
A
C
A
D
A
B
R
A
"

B
R
C
O
B
R

Y
o
u
r

R
E
P
L
A
C
E

p
r
o
c
e
d
u
r
e

r
e
p
l
a
c
e
s

t
h
e

f
i
r
s
t

i
n
p
u
t

b
y

t
h
e

s
e
c
o
n
d

i
n
p
u
t

w
h
e
n
a
y
e
r

i
t

s
e
e
s

i
t

I
n

t
h
e

t
h
i
r
d

i
n
p
u
t
.

1
4

t
h
e

t
h
i
r
d

i
r
s
i
i
t

(
t
h
e

w
o
r
d

y
o
u

a
r
e

m
a
k
i
n
g

r
e
p
l
a
c
e
m
e
n
t
s

i
n
)

i
s

e
m
p
t
y
,

t
h
e
n

y
o
u
r

R
E
P
L
A
C
E

s
h
o
u
l
d

O
U
T
P
U
T

W
h
e
n

y
c
l
i

f
i
n
d

a

l
e
t
t
e
r

t
o

r
e
p
l
a
c
e
,

R
E
P
L
A
C
E

s
h
o
u
l
d

O
U
T
P
U
T

W
D
R
D

O
P

A
N
D

(
c
h
o
o
s
e

o
n
e

w
m

1

w
a
y

b
e

c
o
r
r
e
c
t
)

:
T
H
I
S
:

g
B
Y
,
T
H
I
S
I

R
E
P
L
A
C
E

:
T
H
I
S
:

3
B
Y
.
T
H
I
S
:

B
L

S
I
N
,
T
H
I
S
:

R
E
P
L
A
C
E

B
L

:
T
H
I
S
:

B
F

:
B
Y
,
T
H
I
S
:

I
.

r

a
N
,
T
H
I
S
S

D
I
F
F

:
T
H
I
S
I

I

(
c
h
o
o
s
e

o
n
e

w
w

s
e
v
e
r
a
l

m
a
y

b
e

c
o
r
r
e
c
t
)

R
E
P
L
A
C
E

3
1
4
1
I
3
1

:
B
Y
,
T
H
I
S
:

3
I
N
.
T
H
I
S
J

R
E
P
L
A
C
E

:
T
H
I
S
:

S
B
Y
.
T
H
I
S
I

B
F

S
I
N
,
T
H
I
S
I

:
T
H
/
S
1

R
E
P
L
A
C
E

B
F

:
T
H
I
S
i

B
F

3
1
3
Y
,
T
h
I
S
I

B
F

O
N
,
T
H
I
S
I

3
B
Y
,
T
H
I
S
I

.

L

3
I
N
.
T
H
I
S
S

5
T

8
4
L
T

I
f

y
o
u
'
v
e

t
h
o
u
g
h
t

o
f

p
r
o
b
l
e
m
,

g
a
m
e
.

p
i
c
t
u
r
e
,

o
r

p
r
o
j
e
c
t

y
o
u

w
o
u
l
d

I

I

k

t
o

w
o
r
k

o
n

n
o
w
.

t
a
l
k

t
o

t
u
t
o
r
.

1
1

n
o
t
e

h
e
r

a
r
e

s
o
r
e

P
r
o
b
l
e
m
s

t
o

t
r
y

t
h
a
t

m
i
g
h
t

g
i
v
e

y
o
u

s
o
m
e

i
d
e
a
s
.

D
r
a
w

t
h
e

r
e
v
e
r
s
,

o
f

P
i
c
t
u
r
e

(
w
h
i
c
h

i
s

r
e
p

0
0
0
0
0
0
0

d

b
y

a

s
e
n
t
e
n
c
e

o
f

c
o
r
n
/
I
n
d
s
)

b
y

r
e
v
e
r
s
i
n
g

w
o
r
d

p
o
s
i
t
i
o
n
s

i
n

t
h
e

c
o
m
m
a
n
d

s
e
n
t
e
n
c
e

e
n
d

b
y

r
e
p
l
a
c
i
n
g

F
R
O
N
T

b
y

B
A
C
K

(
F

b
y

i
l
)
.

B
A
C
K

b
y

F
R
O
N
T

(
S

b
y

F
)

e
t
c
.

(
h
i
n
t
&

u
s
e

y
o
u
r

C
O
D
E

p
r
o
c
e
d
u
r
e
)
.

F
o
r

e
x
a
m
p
l
e
,

P

R
E
V
E
R
S
E
P
I
C

"
0

F
1
0
0

R
9
0

5
2
0
0

L
I
O

U
"

O

R
1
0

F
2
0
0

L
9
0

8
1
0
0

U

M
o
d
i
f
y

y
o
u
r

D
R
A
W

p
r
o
c
e
d
u
r
e

t
o

m
a
k
e

a

n
e
w

c
o
m
m
a
n
d

l
a
n
g
u
a
g
e

f
o
r

w
r
i
t
e

t
w
o

p
r
o
c
e
d
u
r
e
s

c
a
l
l
e
d

S
C
V
.
F

(
o
r

S
C
A
N
F
I
R
S
T
)

a
n
d

S
L
A
W

(
o
r

S
C
A
h
E
U
T
F
:
R
S
T
)

w
h
i
c
h

h
a
v
e

t
w
o

i
n
p
u
t
s
.

S
C
A
h
F

c
u
t
o
u
t
s

e
v
e
r
y
t
h
i
n
g

u
p

t
o

t
F
e

o
c
c
u
r
r
e
n
c
e

o
f

t
h
e

f
i
r
s
t

i
n
p
u
t

i
n

t
h
e

s
e
c
o
n
d

i
n
p
u
t
.

F
o
r

e
x
a
m
p
l
e
s

P

S
C
V
.
F

a
s
P

a
A
B
C
S
O
E
F
S
G
H
I
N

A
B
C

P

S
C
A
R
F

s
v
r

"
A
A
R
D
V
A
R
K
'

A
A
4
0

P

S
C
A
N
F

m
!
.
m

0
1
2
3
4
5
6
7
6
9
a

1
2
3
4
5
6
7
8
9

(
i
t

d
i
d
n
'
t

f
i
n
d

X
)

S
C
A
N
B
F

o
u
t
P
U
:
s

e
v
e
r
y
t
h
i
n
g

a
f
t
e
r

t
h
e

o
c
c
u
r
r
e
n
c
e

o
f

t
h
e

f
i
r
s
t

i
n
p
u
t

i
n

t
h
e

s
e
c
o
n
d

i
n
p
u
t
.

F
o
r

e
x
a
m
P
l
e
,

P

S
C
A
%
S
F

"
S
s

P
A
B
C
S
O
E
F
S
G
H
l
e

t
h
e

t
u
r
t
l
e
.

W
h
e
n

D
R
A
W

s
e
e
s

a

n
u
m
b
e
r

f
o
l
l
o
w
e
d

b
y

s
o
m
e
t
h
i
n
g

c
o
n
t
a
i
n
e
d

D
E
F
S
G
H
I

i
n

P
a
r
e
n
t
h

i
t

d
o
e
s

w
h
a
t

i
s

i
n

p
a
r
e
n
t
h
e
s
e
s

t
h
a
t

n
u
m
b
e
r

o
f

t
i
m
e
s
.

P

S
C
A
4
B
F

"
S
e

S
C
A
N
B
F

'
S
o

s
A
5
C
S
O
E
F
S
G
H
I
"

6
H
1

F
o
r

e
x
a
m
p
l
,

D
R
A
W

1
4
(
F
1
0
0

R
9
0
)
'

w
i
l
l

g
o

F
R
O
N
T

1
0
0

a
n
d

R
I
G
H
T

,
0

f
o
u
r

P

S
C
A
N
F

N
O
,

S
C
A
N
B
F

m
S
m

s
O
W
E
R
T
Y
U
I
O
P
S
1
2
3
.
7
"

t
i
m
e
s
.

B
e

c
a
r
e
f
u
l

a
b
o
u
t

'
n
e
s
t
i
n
g
'

o
f

C
A
,
r
p
r
i
t
h
e
s
s
t
o

f
o
r

e
x
a
m
p
l
e
'

1
2
3

m
3
7
.
3
1
4
m

D
R
A
W

"
4
(
1
1
0
0

2
(
R
4
5
)
)
a
.

(
H
i
n
t
t

y
o
U

s
h
o
u
l
d

b
e

s
o
l
o

t
o

u
s
.

y
o
u
r

D
R
A
G

P

S
C
A
N
B
F

0
.
1
1

3
1
4

P
r
o
c
e
d
u
r
e

t
o

d
o

t
h
e

d
r
a
w
i
n
g

a
n
d

y
o
u
r

s
c
a
n

p
r
o
c
e
d
u
r
e
s

t
o

f
i
n
d

a
n
d

c
o
u
n
t

P

a
r
e
n
t
h
e
s
e
s
.

T
h
e

T
i
m
e
x

c
o
m
p
a
n
y

i
s

c
o
n
s
i
d
e
r
i
n
g

a

s
m
a
r
t

w
a
t
c
h

(
r
u
n

b
y

L
o
g
o
)

w
h
i
c
h

c
o
o
s

n
o
t

t
e
l
l

t
i
m
e

a
s

"
9
8
1
4

P
M
"

o
r

'
1
1
1
0
2

A
M
"
.

T
h
e

w
a
t
c
h

1
1
1

U
s
e

t
h
e

t
u
r
t
l
e

t
o

d
r
e
w

a

c
l
o
c
k

f
a
c
e

a
n
d

t
h
e

h
o
u
r

a
n
d

m
i
n
u
t
e

w
i
l
l

s
a
y

(
P
r
i
n
t
)

t
h
i
n
g
s

l
i
k
e

h
a
n
d
s

i
n

t
h
e

c
o
r
r
e
c
t

T
I
M
E

P
o
s
i
t
i
o
n

(
h
i
n
t
s

U
s
e

y
o
u
r

P
r
o
c
e
d
u
r
e
s

f
r
o
m

'
a
p
e

F
O
U
R
T
E
E
N

M
I
N
U
T
E
S

P
A
S
T

N
I
N
E

O
'
C
L
O
C
K

:
:
:
:
:
:
:

:
:

:
:
:
:
2

6
4
L
T

t
o

o
u
t
o
u
t

t
h
e

h
o
u
r

a
n
d

m
i
n
u
t
e
s

f
r
o
m

T
I
N
E
)
.

P
u
t

i
n

"
t
i
m
e

l
a
p
s
e
'

5
6

M
I
N
U
T
E
S

B
E
F
O
R
E

T
W
E
L
V
E

O
'
C
L
O
C
K

I
N

T
H
E

M
O
R
N
I
N
G

i
n
o
u
t

(
n
o
r
m
a
l
l
y

t
h
i
s

i
s

6
0

s
e
c
o
n
d
s
/
m
i
n
u
t
e
)

w
h
i
c
h

y
o
u

c
a
n

u
s
e

C
.

c
a
s
e
d

T
O
E

B
I
G

H
A
N
D

I
S

0
4

T
H
E

3

A
N
D

u
0

o
r

s
l
o
w

d
o
w
n

y
o
u
r

c
l
o
c
k
.

T
h
E

L
I
T
T
L
E

H
A
h
O

I
S

C
N

T
H
E

T
W
E
L
V
E

i
n
s
t
e
a
d

o
f

1
2
t
1
5

W
r
i
t
e

a

p
r
o
c
e
d
u
r
e

w
h
i
c
h

d
r
a
w
s

a

r
o
o
d

r
i
s
r
,

b
e
t
w
e
e
n

c
i
t
i
e
s
,

f
o
r

e

x
a
m
p
l
e
,

H
A
P

"
L
O
S
A
N
G
L
E
5

S
A
C
R
A
M
E
N
T
O

D
E
N
V
E
R

C
H
I
C
A
G
O
"
.

W
.
i
t
e

e

P
r
o
c
e
d
u
r
e

t
o

r
u
n

t
h
i
s

w
a
t
c
h
.

(
h
i
n
t
t

u
s
e

y
o
u
r

S
C
A
N
F

a
n
d

S
C
A
N
B
F

P
r
o
c
e
d
u
r
e
s

t
o

g
e
t

t
h
e

h
o
u
r

a
n
d

m
i
n
u
t
e
s

f
r
o
m

T
I
M
E

b
y

l
o
o
k
i
n
g

f
o
r

"
0

a
n
d

t
2
1
.
4
%
K
t

(
b
e
f
o
r
e

A
M

a
n
d

P
H
)
)
.

I
f

t
h
i
s

p
r
o
b
l
e
m

e
x
c
i
t
e
s

y
o
u
.

Y
o
u

r
i
g
h
t

w
o
n
t

t
o

w
r
i
t
e

a
n
o
t
h
e
r

P
r
o
c
e
d
u
r
e

w
h
i
c
h

k
n
o
w
s

o
b
e
u
t

d
a
t
e
s

o
n

c
a
l
e
n
d
a
r

w
a
t
c
h
e
s

(
h
i
n
t
s

s
c
a
n

f
o
r

/
0

i
n

D
A
T
E
)
.

Appendix 5: Sample Simper Curriculum

This appendix contains portions of the Simper curriculum developed

for the experiment discussed in this report. Many of the excerpts

shown here are referenced by discussions in the text, particularly in

Sections 4.2 and 6.1. The following table indexes the curriculum by

part number, curriculum page, and page of this appendix. The text is

copyrighted, but may be used for noncommercial purposes.

Part Curriculum Page Page

1 see Logo index 172

2 6,12 196

3 13,15,17,19 197-198

4 22,24 199

5 27,30,35,37 200-201

6 40,45 202

7 46-48,52,53 203-205

8 57,60 205-216

9 61,62 206-207

10 67-69,72,73 207-209

11 77-80 210-211

12 82,85-87,89 212-214

13 91,94,97 214-215

195

1
2
5

H
e
r
e
'
s

t
h
e

m
e
a
n
i
n
g

o
f

a
l
l

t
h
e

c
o
n
t
r
o
l

c
o
m
m
a
n
d
s

i
n

S
i
m
p
e
r
'
s

l
a
n
g
u
a
g
e
: c
o
m
m
a
n
d

-
-
-
-
-
-
-

R
U
B
O
U
T

o
r

c
o
n
t
r
o
l
-
A

c
o
n
t
r
o
l

-
V

c
o
n
t
r
o
l
-
U

o
r

c
o
n
t
r
o
l
-
X

c
o
n
t
r
o
l
-
R

L
I
N
E
F
E
E
D

R
E
T
U
R
N

o
r

E
N
T
E
R

c
o
n
t
r
o
l

-
G

c
o
n
t
r
o
l
-
Z

m
e
a
n
s

e
r
a
s
e

t
h
e

l
a
s
t

c
h
a
r
a
c
t
e
r

o
n

m
y

l
i
n
e

e
r
a
s
e

t
h
e

l
a
s
t

w
o
r
d

o
n

m
y

l
i
n
e

e
r
a
s
e

m
y

w
h
o
l
e

l
i
n
e

t
y
p
e

w
h
a
t

m
y

l
i
n
e

r
e
a
l
l
y

l
o
o
k
s

l
i
c
e

c
o
n
t
i
n
u
e

m
y

l
i
n
e

I
'
m

f
i
n
i
s
h
e
d

t
y
p
i
n
g

m
y

l
i
n
e

s
t
o
p

w
h
a
t

y
o
u
'
r
e

d
o
i
n
g

l
o
g

m
e

o
u
t

D
o

y
o
u

u
n
d
e
r
s
t
a
n
d

e
a
c
h

o
n
e
?

Y
E
S
,

N
O a
s
k

o
n
e

o
f

t
h
e

t
u
t
o
r
s

t
o

h
e
l
p

y
o
u

)
(

U
s
e

t
h
e
m

w
h
e
n
e
v
e
r

y
o
u

w
a
n
t

t
o
.

T
h
e

m
o
r
a
l

o
f

t
h
i
s

i
s
:

Y
e*

 J
O

cl
o0

 0
, 0

Y

0

U

T
Y
P
E
W
R
I
T
E
R

a
n
d

t
h
e

C
O
N
T
R
O
L

C
O
M
P
U
T
E
R

t
h
e

S
i
m
p
e
r

C
o
m
p
u
t
e
r
s

a
n
d

c
o
m
p
u
t
e
r

l
a
n
g
u
a
g
e
s

a
r
e

d
e
s
i
g
n
.
.
.
4

b
y

p
e
o
p
l
e

a
n
d
,

s
i
n
c
e

p
e
o
p
l
e

d
o
n
'
t

y
e
t

k
n
o
w

h
o
w

t
o

m
a
k
e

a

c
o
m
p
u
t
e
r

u
n
d
e
r
s
t
a
n
d

E
n
g
l
i
s
h

o
r

C
h
i
n
e
s
e
,

w
e

h
a
v
e

t
o

l
e
a
r
n

t
h
e

s
i
m
p
l
e

l
a
n
g
u
a
g
e
s

t
h
a
t

p
e
o
p
l
e

h
a
v
e

s
u
c
c
e
e
d
e
d

i
n

m
a
k
i
n
g

c
o
m
p
u
t
e
r
s

u
n
d
e
r
s
t
a
n
d
.

W
h
e
n

y
o
u
'
v
e

l
e
a
r
n
e
d

h
o
w

t
o

p
r
o
g
r
a
m

a

c
o
m
p
u
t
e
r
,

y
o
u

c
a
n

t
r
y

t
o

m
a
k
e

u
p

y
o
u
r

o
w
n

c
o
m
p
u
t
e
r

l
a
n
g
u
a
g
e
s
.

uz
t,.

.k
 \N

I
A

l.:
...

4
""

. -
1

:
,
,

r
,
.

r
.
,
,
,
,

m
/c

gr
m

o
ez

cA
A

1
A

 7
7.

/ M
S

ee
l,.

.
.1

/..
/y

 'l
eo

?
-,

-
-A

 ,,
-,

.
1

a:
::Z

ol
fq

,
, g

.,
...

.1
;,

'..
.t0

0
4

0
,

i
.
.

t
e

co
,,,

-.
 r

z.
-.

z
:

2-
 "

,r
 r

.-
t.

'
d'

ec
 ,

I
rt

 ..
.4

W
H

4r
17

rh
,5

 m
z

w
e"

,tt
,r

-
<

;.r
..i

5

.4
1'

4.
..4

1:
!?

r:
 ;

s
se

:,
c,

pf
r-

,tz
e-

,.
''

.4
4

Q
V

 1
. ^

 1
,

4,
...

.1
1.

0
'

"
,

L
eT

S
m

e,
 e

e.
ss

):
1A

L
se

 5
"1

1
A

m
er

io
s

. .
...

-
.,-

 ,

'

14
.1

ti
1'

14
C

N
!'

It
 'e

ar
ec

A
?

r
/

O
lg

i-
51

. /
):

5,
;.4

,
r

/
..

...
...

...
.7

...
..

...
.

A
,Z

...
,Z

 i
C

Z
T

h=
-7

3-
 c

:*
-

7
7
.
.
.
.

4a
.1

1.
P'

,..
,"

 \"
.r

)
1.

..,
...

.,
. 4

1.
..;

4,
--

,,-
-,

...
.;.

:,,
1,

k,
...

. .
..3

,
''')

I.
 '-

'-'
1

-:
,'-

,,.
i.

-:
(.

...
"-

,"
1"

-
.

74
,-

y
,t.

v.
..,

 ..
3

(.
,a

,k
r,

"'
''''

'

7
E

.
. `

u.
...

.
'"

..7
.

1-
: k

7.
...

.'
'

--
p-

 -
f

A
l.

"/
,..

.;.
,2

,..
.c

..&
:?

..
af

r:
..1

-

-,
,_

'1
4,

.1
7

' R
.'"

 h
"

...
"-

...
".

 ..
...

.
...

 I
t.

.-
4L

...
.

,,V
.,.

.t;
:.;

.1
1.

..,
:p

.e
r.

...
...

..L
.

O
n
e

t
h
i
n
g

a
b
o
u
t

t
h
e

w
a
y

c
o
m
p
u
t
e
r
s

a
r
e

m
a
d
e
,

t
h
e
y

p
a
y

a
t
t
e
n
t
i
o
n

t
o

w
h
a
t

w
e

t
e
l
l

t
h
e
m
.

A
n
d

t
h
e

m
o
s
t

c
o
m
m
o
n

w
a
y

o
f

t
e
l
l
i
n
g

t
h
e
m

t
h
i
n
g
s

i
s

b
y

t
y
p
i
n
g

o
n

t
h
e

e
l
e
c
t
r
i
c

t
y
p
e
w
r
i
t
e
r
s

t
h
a
t

m
o
s
t

o
f

t
h
e
m

h
a
v
e
.

T
h
a
t
'
s

w
h
o
r
e

t
h
e
y

g
i
v
e

t
h
e
i
r

a
t
t
e
n
t
i
o
n
.

Y
o
u

c
a
n

s
e
e

t
w
o

k
i
n
d
s

o
f

t
y
p
e
w
r
i
t
e
r

i
n

t
h
e

p
i
c
t
u
r
e
s

o
n

t
h
e

p
r
e
v
i
o
u
s

p
a
g
e
.

T
h
e

l
e
f
t
h
a
n
d

o
n
e

P
r
i
n
t
s

o
n

p
a
p
e
r

t
h
a
t

a

p
e
r
s
o
n

c
a
n

s
a
v
e
,

w
h
i
l
e

t
h
e

o
t
h
e
r

p
r
i
n
t
s

o
n

a

t
e
l
e
v
i
s
i
o
n

s
c
r
e
e
n
.

s
o
m
e

p
e
o
p
l
e

p
r
e
f
e
r

T
V

t
y
p
e
w
r
i
t
e
r
s

b
e
c
a
u
s
e

a

c
o
m
p
u
t
e
r

c
a
n

p
r
i
n
t

w
h
a
t
e
v
e
r

i
t

h
a
m

t
o

s
a
y

f
e
s
t
e
r

o
n

a

T
V

s
c
r
e
e
n

t
h
a
n

o
n

p
a
p
e
r
,

b
u
t

w
h
a
t

i
t

p
r
i
n
t
s

o
n

p
a
p
e
r

d
o
e
s
n
'
t

d
i
s
t
A
i
e
a
c
,

i
t
'
s

y
o
u
r
s

f
o
r
e
v
e
r
.

m
o
r
e
s

a

d
r
a
w
i
n
g

(
m
a
d
,

b
y

a

h
u
m
a
n
)

o
f

t
h
e

k
i
n
d

o
f

t
y
p
e
w
r
i
t
e
r

y
o
u
'
l
l

b
e

u
s
i
n
g
:

f
D

1
5
S

s
t
r
e
e
t

a
n
d

l
o
o
k

i
n
s
i
d
e

e
a
c
h

h
o
u
s
e
.

S
i
m
p
e
r
'
s

m
e
m
o
r
y

i
s

J
u
s
t

l
i
k
e

t
h
a
t
.

T
h
e
r
e

a
r
e

2
5
0

p
l
a
c
e
s
,

w
e

c
a
l
l

t
h
e
n

l
o
c
a
t
i
o
n
s
"
,

i
n

S
i
m
p
e
r
'
s

m
e
m
o
r
y

a
n
d

e
a
c
h

o
n
e

c
a
n

h
o
l
d

a

n
u
m
b
e
r

w
i
t
h

a
s

m
a
n
y

a
s

t
e
n

d
i
g
i
t
s

i
n

i
t
.

S
o

f
a
r
,

y
o
u
'
v
e

p
u
t

n
u
m
b
e
r
s

i
n
t
o

a

f
e
w

l
o
c
a
t
i
o
n
s

b
y

s
i
m
p
l
y

t
y
p
i
n
g

a

l
i
t
e
r
a
l

w
h
e
n

S
i
m
p
e
r

p
u
t

y
o
u

a
t

a

n
e
w

l
o
c
a
t
i
o
n
.

L
O
C
A
T
I
O
N

L
.]

A
D
D
R
E
S
S

0
0
1

0
0
2

0
0
3

0
0
4

2
5
0

S
o

t
h
e

n
u
m
b
e
r

t
o

t
h

l
e
f
t

o
f

t
h
e

"
t
"

S
i
m
p
e
r

t
y
p
e
s

i
s

t
h
e

a
d
d
r
e
s
s

o
f

t
h
e

l
o
c
a
t
i
o
n

y
o
u

c
a
n

p
u
t

s
o
m
e
t
h
i
n
g

i
n
t
o

n
e
x
t
.

I
t
s

l
i
k
e

s
t
a
n
d
i
n
g

i
n

f
r
o
n
t

o
f

t
h
e

h
o
u
s
e

w
i
t
h

t
h
a
t

a
d
d
r
e
s
s
.

Y
o
u

c
a
n

o
p
e
n

t
h
e

d
o
o
r

a
n
d

p
u
t

s
o
m
e
t
h
i
n
g

i
n
s
i
d
e

b
y

t
y
p
i
n
g

a

l
i
t
e
r
a
l

a
n
d

t
h
e

R
E
T
U
R
N

k
e
y
.

S
u
p
p
o
s
e

a
l
l

t
h
e

h
o
u
s
e
s

o
n

t
h
e

s
t
r
e
e
t

a
r
e

n
e
w

a
n
d

n
o
t
h
i
n
g

i
s

i
n

t
h
e
m

y
e
t
.

T
h
a
t
'
s

w
h
a
t

S
i
m
p
e
r
'
s

m
e
m
o
r
y

i
s

l
i
k
e

w
h
e
n

y
o
u

f
i
r
s
t

l
o
g

o
n
.

E
a
c
h

m
e
m
o
r
y

l
o
c
a
t
i
o
n

c
o
n
t
a
i
n
s

t
h
e

n
u
m
b
e
r

0
.

R
e
m
e
m
b
e
r
,

a
n
y
t
i
m
e

y
o
u

w
o
n
t

t
o

s
e
e

w
h
a
t
'
s

i
n

S
i
m
p
e
r
'
s

m
e
m
o
r
y
,

j
u
s
t

u
s
e

t
h
e

L
I
S
T

c
o
m
m
a
n
d
.

N
o
w

t
h
a
t

y
o
u

c
a
n

m
a
k
e

S
i
m
p
e
r

r
e
m
e
m
b
e
r

t
h
i
n
g
s
,

s
o
m
e
t
h
i
n
g

a
n
y

c
o
m
p
u
t
e
r

m
u
s
t

b
e

a
b
l
e

t
o

d
o
,

y
o
u

a
r
e

r
e
a
d
y

t
o

m
a
k
e

i
t

f
o
r
g
e
t

e
v
e
r
y
t
h
i
n
g
.

}
T
y
p
e

S
C
R
A
T
C
H

a
n
d

t
h
e

R
E
T
U
R
N

k
e
y
.

N
o
w

u
s
e

L
I
S
T

t
o

s
e
e

w
h
a
t

S
i
m
p
e
r

r
e
m
e
m
b
e
r
s
.

D
i
d

S
i
m
p
e
r

r
e
m
e
m
b
e
r

y
o
u
r

o
l
d

n
u
m
b
e
r
s
?

Y
E
S

N
O

I
t

s
h
o
u
l
d
n
'
t

h
a
v
e
!

1
G
o
o
d
,

t
h
e

S
C
R
A
T
C
H

c
o
m
m
a
n
d

g
i
v
e
s

S
i
m
p
e
r

p
e
r
m
a
n
e
n
t

a
m
n
e
s
i
a
.

A
l
l

t
h
e

l
o
c
a
t
i
o
n
s

(
h
o
u
s
e
s
)

a
r
e

e
m
p
t
y

a
g
a
i
n
,

a
s

i
f

y
o
u

h
a
d

J
u
s
t

l
o
g
g
e
d

o
n
.

Il
tr

i 3
1
3
S

S
o

f
a
r
,

y
o
u
'
v
e

l
e
a
r
n
e
d

s
o
m
e

h
e
l
p
f
u
l

c
o
m
m
a
n
d
s

f
o
r

t
y
p
i
n
g

a
n
d

c
h
a
n
g
i
n
g

l
i
n
e
s

b
e
f
o
r
e

S
i
m
p
e
r

r
e
a
d
s

t
h
e
m
.

T
h
e
y

a
r
e

c
a
l
l
e
d

e
d
i
t
i
n
g

c
o
m
m
a
n
d
s
,

b
e
c
a
u
s
e

t
h
e
y

l
e
t

y
o
u

d
o

w
h
a
t

t
h
e

e
d
i
t
o
r

o
f

a

n
e
w
s
p
a
p
e
r

d
o
e
s
,

h
e

c
h
a
n
g
e
s

s
t
o
r
i
e
s

g
o
i
n
g

i
n
t
o

t
h
e

p
a
p
e
r

b
e
f
o
r
e

t
h
e

p
u
b
l
i
c

g
e
t
s

t
o

r
e
a
d

i
t
.

N
o
w

w
e
r
e

r
e
a
l
l
y

g
o
i
n
g

t
o

s
t
a
r
t

t
a
l
k
i
n
g

S
i
m
p
e
r
'
s

l
a
n
g
u
a
g
e
.

S
i
m
p
e
r
,

l
i
k
e

m
o
s
t

c
o
m
p
u
t
e
r

l
a
n
g
u
a
g
e
s
,

u
n
d
e
r
s
t
a
n
d
s

s
e
v
e
r
a
l

k
i
n
d
s

o
f

w
o
r
d
s

t
h
a
t

y
o
u

c
a
n

t
y
p
e
.

Y
o
u
'
v
e

a
l
r
e
a
d
y

l
e
a
r
n
e
d

t
o

u
s
e

s
o
m
e

o
f

t
h
e

k
i
n
d

c
a
l
l
e
d

c
o
m
m
a
n
d
"
.

A
n
o
t
h
e
r

k
i
n
d

i
s

s
o
m
e
t
h
i
n
g

e
l
s
e

y
o
u
'
v
e

p
r
o
b
a
b
l
y

s
e
e
n

a
l
r
e
a
d
y
.

I
t
s

c
a
l
l
e
d

a

"
l
i
t
e
r
a
l
.

W
h
e
n

y
o
u

t
a
l
k

t
o

S
i
m
p
e
r

a
n
d

y
o
u

m
e
n
t
i
o
n

a

n
u
m
b
e
r
,

a
n
y

n
u
m
b
e
r
,

t
h
a
t

n
u
m
b
e
r

i
s

a

l
i
t
e
r
a
l
.

o
n
e

t
h
i
n
g

a
b
o
u
t

a

l
i
t
e
r
a
l
,

i
t
s

n
o
t

h
i
d
i
n
g

a
n
y
t
h
i
n
g
.

Y
o
u
'
l
l

a
l
w
a
y
s

k
n
o
w

w
h
a
t

i
t

m
e
a
n
s

b
y

j
u
s
t

l
o
o
k
i
n
g

a
t

i
t
.

L
u
i
g
i

L
i
t
e
r
a
l

I
n

E
n
g
l
i
s
h
,

p
e
o
p
l
e

o
f
t
e
n

u
s
e

q
u
o
t
e

m
a
r
k
s

(
"
)

t
o

s
u
r
r
o
u
n
d

w
o
r
d
s

t
h
a
t

a
r
e

p
a
r
t

o
f

r
.

l
i
t
e
r
a
l
.

L
o
o
k

a
t

t
h
i
s

s
e
n
t
e
n
c
e
s

T
h
e

c
o
o
k
i
e

m
o
n
s
t
e
r

s
a
i
d
:

G
i
v
e

m
e

c
o
c
k
l
e
s
!
.

T
h
e

c
o
o
k
i
e

m
o
n
s
t
e
r

a
c
t
u
a
l
l
y

s
a
i
d

t
h
e

w
o
r
d
s

b
e
t
w
e
e
n

t
h
e

q
u
o
t
e
s
.

T
h
e

w
o
r
d
s

b
e
t
w
e
e
n

t
h
e

q
u
o
t
e
s

m
a
k
e

a

l
i
t
e
r
a
l

i
n

E
n
g
l
i
s
h
.

S
i
m
p
e
r
,

h
o
w
e
v
e
r
,

d
o
e
s

N
O
T

u
s
e

q
u
o
t
e
s

t
o

m
a
r
k

l
i
t
e
r
a
l
s
.

E
x
c
e
p
t

i
n

o
n
e

c
a
s
e
.

n
u
m
b
e
r
s

a
r
e

I
t
s

o
n
l
y

l
i
t
e
r
a
l
s
.

1
9
5

T
h
u

R
U
k

c
o
m
m
e
n
t
,

t
e
l
l
s

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

t
h
a
t

y
o
u

h
a
v
e

p
u
t

o
r
o
g
r
a
n

(

l
i
s
t

o
f

c
o
m
m
a
n
d
s
)

I
n
t
o

I
t
s

m
e
m
o
r
y

a
n
d

Y
o
u

w
e
n
t

I
t

t
o

o
b
e
y

t
h
e
m
,

'
h
o
w

d
o
e
s

t
h
e

c
o
m
p
u
t
e
r

o
b
e
y

m
y

I
n
s
t
r
u
c
t
i
o
n
s
?
"
,

y
o
u

a
s
k
,

W
h
e
n

Y
o
u

o
l
y
e

t
h
e

c
o
m
m
a
n
d

R
O
N
,

S
i
m
p
e
r

o
u
t
s

t
h
e

n
u
m
b
e
r

1

I
n
t
o

t
h
e

P

r
e
g
i
s
t
e
r

e
n
d

t
e
l
l
s

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

t
o

s
t
a
r
t

o
b
e
y
i
n
g

i
n
s
t
r
u
c
t
i
o
n
s

i
n

I
t
s

0
m
e
m
o
r
y

(
t
h
a
t
'
s

a
l
l

t
h
e

c
o

-
o
u
t
e
r

k
n
o
w
s

h
o
w

t
o

d
o
)
.

T
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

1
.
4

C
o
m
e
s

t
o

l
i
f
e
.

c
l
-

C
O

R
I
t

u
s
e
s

t
h
e

n
u
m
b
e
r

i
n

t
h
e

P

r
e
g
i
s
t
e
r

a
s

a
n

a
d
d
r
e
s
s

a
n
d

l
o
o
k
s

i
n

i
t
s

s
e
n
o
r
y

f
o
r

t
h
e

l
o
c
a
t
i
o
n

w
h
i
c
h

h
a
s

t
h
a
t

n
u
m
b
e
r

f
o
r

i
t
s

a
d
d
r
e
s
s
.

T
h
i
s

i
s

(
0

s
o
m
e

c
o
m
m
a
n
d
s
,

c
a
l
l
e
d

"
i
n
s
t
r
u
c
t
i
o
n
s
"
,

w
h
i
c
h

S
i
m
p
e
r

w
i
l
l

l
e
t

y
o
u

p
u
t

i
n

s
i
m
i
l
a
r

t
o

w
h
a
t

w
e

d
o

w
h
e
n

w
e

h
a
v
e

f
r
i
e
n
d
'
s

a
d
d
r
e
s
s

o
n

p
i
e
c
e

o
f

cr
--

z
a

l
i
s
t

f
o
r

i
t

t
o

o
b
e
y

l
a
t
e
r
.

W
h
e
n

w
e

m
a
k
e

a

l
i
s
t

f
o
r

a
n
o
t
h
e
r

p
e
r
s
o
n
.

g
b

p
a
p
e
r

a
n
d

w
e

u
s
e

i
t

t
o

f
i
n
d

t
h
e

r
i
g
h
t

h
o
u
s
e
.

w
e

u
s
u
a
l
l
y

w
r
i
t
e

i
t

o
n

p
a
p
e
r
.

F
o
r

S
i
m
p
e
r
.

l
i
s
t
s

m
u
s
t

b
e

w
r
i
t
t
e
n

i
n
t
o

C
/
)

s
t
n

m
e
m
o
r
y
.

Y
o
u

a
l
r
e
a
d
y

k
n
o
w

h
o
w

t
o

t
y
p
e

n
u
m
b
e
r
s

i
n
t
o

S
i
m
p
e
r
'
s

m
e
m
o
r
y

0
0
0
0
0
0
0
0
1

1
0

r
e
g
i
s
t
e
r

I
t

l
o
o
k
s

a
t

t
m
e

P

r
e
g
i
s
t
e
r

t
o

s
e
e

w
h
a
t
'
s

f
n

I
S
!

0
0
1

t

0
0
2

I

2
S
0

r M
e
m
o
r
y

0
0
3
7
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0

1

1
0
0
0
0
0
0
0
0
0
0
]

1
7
5

S
i
m
p
e
r
'
s

r
e
g
i
s
t
e
r
s

a
r
e

y
o
u
r
s

t
o

u
s
e

f
o
r

c
a
l
c
u
l
a
t
i
o
n
s

w
h
e
n

y
o
u

w
r
i
t
e

p
r
o
g
r
a
m
s
.

'
W
h
a
t

i
s

a

p
r
o
g
r
a
m
?
"
,

y
o
u

a
s
k
.

A

p
r
o
g
r
a
m

i
s

a

l
i
s
t

o
f

i
n
s
t
r
u
c
t
i
o
n
s

t
h
a
t

s
o
m
e

h
u
m
a
n

o
r

m
a
c
h
i
n
e

c
a
n

r
e
a
d

a
n
d

o
b
e
y
.

N
o
/

g
o

t
o

t
h
e

s
u
p
e
r
m
a
r
k
e
t

b
u
y

e
g
g
s

a
n
d

b
a
c
o
n

g
o

t
o

t
h
e
'
c
l
e
a
n
e
r
s
V
.

l
e
a
v
e

y
o
u
r

c
o
a
t

t
h
e
r
e

c
o
m
e

h
o
m
e

(
1
7
1
4
y

p
r
o
g
r
a
m

s
a
y
s

I

d
o

t
h
i
s

n
e
x
t
.

$

Y
o
u
'
v
e

a
l
r
e
a
d
y

b
e
e
n

p
r
o
g
r
a
m
m
i
n
g

b
y

u
s
i
n
g

t
h
e

e
d
i
t
i
n
g
,

I
a
s
i
,

D
U
M
P

a
n
d

S
C
R
A
T
C
H

c
o
m
m
a
n
d
s
.

H
o
w
e
v
e
r
,

S
i
m
p
e
r

o
b
e
y
s

t
h
o
s
e

c
o
m
m
a
n
d
s

i
m
m
e
d
i
a
t
e
l
y

w
i
t
h
o
u
t

w
a
i
t
i
n
g

f
o
r

y
o
u

t
o

m
a
k
e

a

l
i
s
t

o
f

t
h
e
m
.

T
h
e
r
e

a
r
s
,

i
n

f
a
c
t
,

.
A
s

s
o
o
n

s
s

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

f
i
n
d
s

t
h
e

l
o
c
a
t
i
o
n

t
h
e

P

r
e
g
i
s
t
e
r

a
n
d

t
h
e
n

L
I
S
T

a
n
d

D
U
M
P

t
h
e
m
.

N
o
w

y
o
u
'
l
l

m
e
.

h
o
w

t
o

t
y
p
e

i
n
s
t
r
u
c
t
i
o
n
s

s
a
y
s

t
o

f
i
n
d
,

i
t

m
a
k
e
s

t
h
e

n
u
m
b
e
r

i
n

t
h
e

P

r
e
g
i
s
t
e
r

1

b
i
g
g
e
r

t
h
a
n

f
t

w
a
s

:
.
;

(
I
)

i
n
t
o

m
e
m
o
r
y

a
n
d

u
s
e

L
I
S
T

t
o

s
e
e

t
h
e
m
.

c
g

b
e
f
o
r
e

(
y
o
u
'
l
l

s
e
e

w
h
y

i
t

d
o
e
s

t
h
i
s

s
o
o
n
)
.

N
o
w

t
h
e

c
o
m
p
u
t
e
r

r
e
e
d
s

t
h
e

(
D

U
s
e

S
C
R
A
T
C
H

t
o

c
l
e
a
r

S
i
m
p
e
r
'
s

m
e
m
o
r
y
.

N
o
w

t
y
p
e

H
A
L
T

a
n
d

a
n

E
N
T
E
R
.

"
I

n
u
m
b
e
r

i
n

t
h
e

m
e
m
o
r
y

l
o
c
a
t
i
o
n

i
t

h
a
s

f
o
u
n
d

a
n
d

o
b
e
y
s

t
h
a
t

a
s

e
n

i
n
s
t
r
u
c
t
i
o
n

(
y
o
u

p
r
o
b
a
b
l
y

r
e
m
e
m
b
e
r

t
h
a
t

m
o
s
t

c
o
m
p
u
t
e
r
s

r
e
a
l
l
y

o
n
l
y

u
n
d
e
r
s
t
a
n
d

!
e
n
d
u
e
d
*

o
f

n
u
m
b
e
r
s
)
.

I
n

t
h
e

p
i
c
t
u
r
e

a
b
o
v
e
,

i
s

t
h
e

i
n
s
t
r
u
c
t
i
o
n

i
n

l
o
c
a
t
i
o
n

1

a

H
A
L
T

7

4
:

Y
E
S

N
O

1
1
(

T
y
p
e

M
A
L
T

a
n
d

t
h
e

E
N
T
E
R

k
e
y
,

W
h
a
t

n
u
m
b
e
r

d
i
d

S
i
m
p
e
r

p
r
i
n
t

n
e
x
t

t
o

y
o
u
r

H
A
L
T
?

71
11

"
6
6
7
-

T
h
a
t

n
u
m
b
e
r

i
s

w
h
a
t

S
i
m
p
e
r

a
c
t
u
a
l
l
y

h
a
s

i
n

i
t
s

m
e
m
o
r
y
.

I
t
'
s

h
o
w

S
i
m
p
e
r

t
r
a
n
s
l
a
t
e
s

H
A
L
T
.

T
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r
,

l
i
k
e

m
o
s
t

c
o
m
p
u
t
e
r
s
,

r
e
a
l
l
y

o
n
l
y

u
n
d
e
r
s
t
a
n
d
s

n
u
m
b
e
r
s
.

S
i
m
p
e
r

r
e
a
d
s

w
h
a
t

y
o
u

t
y
p
e

a
n
d
,

i
f

i
t

i
s

a
n

i
n
s
t
r
u
c
t
i
o
n

f
o
r

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r
.

i
t

p
u
t
s

a

n
u
m
b
e
r

Z
a
s

:
s

t
h
e

a
o
n
r
e
s
s

o
f

t
n
e

l
o
c
a
t
i
o
n

y
o
u

a
r
e

a
t

n
o
w

4
?

Y
E
S

P
.
0

I
t

s
h
o
u
l
d

t
e
l

G
e
t

s
o
-
e

h
e
l
p
.

I
k
e

t
y
p
e

P
u
T

P

&
n
o

a

s
p
a
c
e

a
s
*

t
n
e

e
c
o
r
e
s
s

y
o
u

a
r
e

a
t

n
o
.

(
t
h
e

n
u
m
p
e
r

2
2
3

R
e
m
e
-
p
e
r

t
h
a
t

S
i
.
o
e
r
'
s

m
e
h
o
r
y

i
s

l
i
k
e

a

s
t
r
e
e
t

w
i
t
h

2
5
0

r
o
u
t
e
s

o
n

I
t
.

I
m
a
g
i
n
e

s
o
m
o
o
r
e

t
o
l
d

y
o
u

t
o

w
a
l
k

0
0
.
n

t
h
a
t

t

a
n
d

s
t
o
p

a
t

e
a
c
h

h
o
s
e

t
o

c
o
l
l
e
c
t

m
o
n
e
y

f
o
r

U
N
I
C
E
F
.

w
h
i
c
h

o
f

t
h
e
s
e

t
w
o

c
o
l
l
e
c
t
i
o
n

t
r
i
o
s

w
o
u
l
d

y
o
u

r
a
t
h
e
r

t
a
k
e
?

t
o

t
e
a

l
e
f
t

o
f

t
h
e

e
x
c
l
a
m
a
t
i
o
n

-
a
r
k
)
.

M
O
U
S
E

A
D
D
R
E
S
S
E
S

.
h
a
t

o
o

y
o
u

t
h
i
n
k

t
n
e

v
a
l
u
e

i
n

t
n
e

P

r
e
g
i
s
t
e
r

w
i
l
l

b
e

a
f
t
e
r

S
i
t
p
e
r

o
b
e
y
s

.
0
1
5

2
3
0

1
'

2
3

I
-
-
-
'
P

6
7

-
-
m
g
.
.
.
1
7
6

vq
p

1

t
h
i
s

i
n
s
t
r
u
c
t
i
o
n
?

S
T
A
R
T

,

2
3

4
6

w
h
a
t

l
o
c
a
t
i
o
n

0
0

y
o
u

t
h
i
n
k

S
i
m
p
e
r

w
i
l
l

l
o
o
k

a
t

n
e
x
t

a
f
t
e
r

i
t

o
b
e
y
s

t
h
i
s

i
n
s
t
r
u
c
t
i
o
n
?

4
N
2
.
7
.
4

B
e
l
i
e
v
e

i
t

o
r

n
o
t
.

y
o
u

h
a
v
e

:
u
s
t

w
r
i
t
t
e
n

a

c
o
r
p
o
r
a
'
,

t
h
a
t

w
i
l
t

g
o

f
o
r
e
v
e
r
(

C
O
I

I
P
t
a

A

7
3

C
O
2

!
P
U
T

P

2

C
O
3

:
H
A
L
T

F
O
R
E
V
E
R

1
7
7
1
(
1

R
U
N

i
t
,

o
u
t

f
i
r
s
t

r
e
m
e
m
b
e
r

t
r
a
t

t
n
e

c
o
n
t
r
o
l

G

c
o
m
m
a
n
d

s
t
o
p
s

S
i
m
p
e
r

f
r
o
m

G
o
i
n
g

s
o
m
e
t
h
i
n
g

n
o

n
a
t
t
e
r

a
n
a
t

t
n
a
t

s
o
-
e
t
h
i
n
g

i
s
.

N
o
w

t
e
l
l

S
i
m
p
e
r

t
o

o
b
e
y

y
o
u
r

"
f
o
r
e
v
e
r
"

o
r
o
g
r
a
,
-

c
y

t
y
p
i
n
g

R
U
4

a
n
d

a
n

E
N
T
E
R
.

P
l
e
a
s
e

s
n
o
w

w
h
e
t

S
l
n
p
e
r

i
s

t
i
m
i
n
c
l

:
s

t
n
e

v
a
l
u
e

I
n

t
n
e

P

r
e
g
i
s
t
e
r

c
n
a
n
c
i
n
g

n
o
w
?

t
i
t

Y
E
S

I
s

a
n
y

r
e
g
i
s
t
e
r
'
s

v
a
l
u
e

c
n
a
n
p
f
n
g

n
o
w
?

Y
E
S

A
s
k

f
o
r

h
e
l
p
.

I
f

y
o
u

c
h
o
s
e

t
r
i
p

I
f

Y
o
u
'
d

p
r
o
b
a
b
l
y

h
e

v
e
r
y

t
i
r
e
d

b
y

t
h
e

t
i
m
e

y
o
u

h
a
d

v
i
s
i
t
e
d

e
v
e
r
y

h
o
u
s
e

a
n
d

y
o
U

m
i
g
h
t

h
a
v
e

f
o
r
g
o
t
t
e
n

s
o
m
e
.

T
i
i
p

2
"
i
s

s
h
o
r
t
e
r

e
n
d

c
a
s
i
e
'
r

t
o

k
n
o
w

h
o
w

t
o

f
o
l
l
o
w
.

N
o
t

c
o
m
p
u
t
e
r
s

d
o
n
'
t

G
e
t

t
i
r
e
d
,

b
u
t

t
h
e
y

a
r
e
n
'
t

v
e
r
y

s
m
a
r
t
.

S
o

t
r
i
o

2

i
s

e
a
s
i
e
r

f
o
r

S
f
"
p
e
r

t
o

f
o
l
l
o
w
,

o
e
c
a
t
s
e

e
l
l

i
t

m
u
s
t

d
o

i
s

a
d
o

1

t
o

t
h
e

a
d
d
r
e
s
s

o
f

t
h
e

l
o
c
a
t
i
o
n

i
t

I
s

l
o
o
k
i
n
g

a
t

n
o
w

I
n

o
r
d
e
r

t
o

g
e
t

t
h
e

a
d
d
r
e
s
s

o
f

t
h
e

l
o
c
a
t
i
o
n

t
o

l
o
o
k

a
t

n
e
x
t
.

T
h
e

P

r
e
g
i
s
t
e
r

i
s

w
h
e
r
e

S
i
m
p
e
r

h
o
l
d
s

t
h
i
s

b
i
t

o
f

i
n
f
o
r
m
a
t
i
o
n

w
h
i
l
e

i
t

i
s

o
p
e
v
i
n
c

t
h
e

I
n
s
t
r
u
c
t
i
o
n

i
t

i
s

l
o
o
k
i
n
g

a
t
.

G
i
v
e

t
h
e

S
I
R
A
T
C
H

c
o
m
m
a
n
d

t
o

e
r
a
s
e

m
e
m
o
r
y

a
n
d

t
y
p
e

i
n

t
h
i
s

n
e
w

P
r
o
g
r
a
m

(
y
o
u

t
y
p
e

w
h
e
t
l
s

u
n
d
e
r
l
i
n
e
d

a
n
d

e
n
d

e
a
c
h

l
i
n
e

w
l
t
n

E
N
T
E
R

o
r

R
E
T
U
R
N

a
s

u
s
u
a
l
)
(

0
0
1

(
P
U
T

A

7
3

0
0
2

(
P
'
a
T

5

6
6

C
O
3

i
m
1
.
6
7

N
o
w

r
u
n

y
o
u
r

!
s
o
,

p
r
o
g
r
a
m

b
y

t
y
p
i
n
g

R
U
N

a
n
d

t
h
e

E
N
T
E
R

k
e
y
.

P

r
e
c
i
s
t
e
r

c
a
r
e
f
u
l
l
y

a
s

e
a
c
h

I
n
s
t
r
u
c
t
i
o
n

i
s

o
b
e
y
e
d
.

O
b
s
e
r
v
e

t
h
e

3
0
S

S
i
n
c
e

S
i
m
o
e
r

w
a
s

t
h
r
e
e

O
a
s
t
s

(
i
n
t
e
r
p
r
e
t
e
r
,

s
s
s
s
s

b
l
e
P
s

c
o
P
o
w
t
e
r
)
.

y
o
u

a
r
e

r
e
a
l
l
y

l
e
a
r
n
i
n
g

t
o

t
a
l
e

t
h
r
e
e

l
a
n
g
u
a
g
e
s
.

7
%
6

f
i
r
s
t

i
s

t
h
e

i
n
t
e
r
p
r
e
t
e
r
'
s

'
c
o
-
-
e

-
d

l
a
n
o
u
s
c
e

w
h
i
c
h

c
o
n
s
i
s
t
s

o
f

t
h
e

c
o
m
m
a
n
d
s

l
i
k
e

E
N
T
E
R
.

A
u
8
O
U
T
,

t
h
e

c
o
n
t
r
o
l

c
h
a
r
a
c
t
e
r
s
,

R
U
N
.

L
I
S
T
,

a
n
d
m
o
r
e

c
o
m
m
a
n
d
s

t
h
a
t

y
o
u

w
i
l
l

b
e

l
e
a
r
n
i
n
g

s
o
o
n
.

T
h
e

s
e
c
o
l
o

l
a
n
g
u
a
g
e

i
s

m
a
c
e

o
f

0
1
1

t
h
e

qj0
p
o
s
s
i
b
l
e

i
n
s
t
r
u
c
t
i
o
n
s

l
i
k
o

S
U
B

A

2
3
.

R
A
L
T
,

a
n
d

m
a
n
y

n
o
r
*

y
o
u

w
i
l
l

l
e
a
r
n
.

"
.
1

T
h
i
s

l
a
n
g
u
a
g
e

i
s

c
a
l
l
e
d

S
i
m
o
e
r
'
s

l
y

l
a
n
g
u
a
g
e
"
.

b
e
c
a
u
s
e

t
h
e

t
4

a
s
s
e
m
b
l
e
r

t
a
k
e
s

e
a
c
h

p
e
r
t

o
f

a
n

s
s
s
s
s

o
l
y

l
a
n
g
u
a
g
e

i
n
s
t
r
u
c
t
i
o
n
.

t
r
a
n
s
l
a
t
e
s

i
t

i
n
t
o

a

n
u
m
b
e
r

a
n
d

e
s
s
e
m
o
l
e
s

t
h
e
s
e

n
u
m
b
e
r
s
,

f
r
o
m

l
e
f
t

t
o

\
O
D 4

r
i
g
h
t
,

t
o

m
a
k
e

o
n
e

n
u
m
b
e
r

t
h
a
t

g
o
e
s

i
n
t
o

t
h
e

S
i
m
p
e
r

c
o
m
o
u
t
e
r
'
s

m
e
r
o
r
Y
1

.
P
U
T

8
a
s

lid
\\

\N
N

\
A

D 8
t
o

1
1

1
0
0
4
5

m
i
l
P

1
1
1
0
0
4
5

Z 3
1
1

M
o
s
t

a
s
s
e
m
b
l
y

l
a
n
g
u
a
g
e

i
n
s
t
r
u
c
t
i
o
n
s

h
a
v
e

t
h
r
e
e

p
a
r
t
s

c
a
l
l
e
d

'
f
i
.
l
d
s
T
M
,

1
,
J

i
:
0

F
r
o
m

'
e
f
t

t
o

r
i
g
h
t

t
h
e
y

a
r
e

t
h
e

o
p
e
r
a
t
i
o
n

f
i
e
l
d

(
P
U
T
)
,

t
h
e

r
e
g
i
s
t
e
r

a
n)

i
(
0
1
0

:
6
)
,

a
n
d

t
n
e

s
o
d
r
e
s
s

f
i
e
l
d

(
4
5
)
.

O
Z
)

R
I
,

C
l
)

T
h
e

t
h
i
r
d

l
a
n
g
u
a
g
e

y
o
u
'
r
e

l
e
a
r
n
i
n
g

i
s

S
i
m
p
e
r
'
s

"
m
a
c
h
i
n
e

l
A
n
O
w
a
g
e
.

I
t

i
s

s
i
m
p
l
y

a
l
l

t
h
e

n
u
m
b
e
r
s
,

l
i
k
e

1
1
1
0
0
4
5
,

t
h
a
t

t
h
e

5
0
,
0
1
1
r

c
o
m
o
w
t
r

u
n
t
l
e
r
s
t
n
d
s
.

R
e
m
e
m
b
e
r

t
h
t

w
he

n
yo

u
sa

y
R

U
N

, t
o

S
im

pe
r

0e4
C
o
m
o
.
.
.
t
e
r

c
a
n

o
b
e
y

o
n
l
y

t
h
o
s
e

n
u
m
b
e
r
s

i
n

i
t
s

m
e
m
o
r
y

t
h
a
t

i
t

u
n
o
e
r
s
t
s
n
o
s
.

I
t

w
i
l
l

c
o
m
p
l
a
i
n

i
f

t
e
e

P

r
e
g
i
s
t
e
r

e
v
e
r

t
e
l
l
s

i
t

t
o

l
o
o
k

a
t

s
o
m
e

l
o
c
a
t
i
o
n

t
n
a
t

c
o
n
t
a
i
n
s

a

n
u
m
b
e
r

i
t

d
o
e
s

n
o
t

k
n
o
w

h
o
w

t
o

o
b
e
y
.

U
s
e

S
C
R
A
T
C
n

t
o

e
r
a
s
e

S
i
m
p
e
r
'
s

m
e
m
o
r
y

a
n
d

t
h
a
n

t
y
p
e

t
h
e
s
e

l
i
t
e
r
a
l
s

I
n
t
o

m
.
-
o
r
y
t

0
0
1

S
O

0
0
2

3
1
0

0
0
3

:
1
0
0
0
0
0
0

0
0
4

1
6
2
1
0
0
0
0

0
0
5

1
7
1
0
0
0
0
0

27
3

P
is

.t
S

B
y

n
o
w
,

y
o
u

m
a
y

h
a
v
e

a

f
e
e
l
i
n
g

t
h
a
t

S
i
m
o
e
r

h
a
s

a

'
a
l
i
t

o

s

s
l
i
l
y
.

Y
o
u
'
r
e

r
i
g
h
t
.

I
t

r
e
a
l
l
y

h
a
s

t
h
r
e
e

o
a
r
t
s
1

t
h
e

i
n
t
e
r
p
r
e
t
e
r

t
h
e

a
s
s
e
m
b
l
e
r

a
n
d

t
h
e

c
o
m
o
u
t
e
r
,

T
h
i
s

p
i
c
t
u
r
e

s
h
o
w
s

i
t

a
l
i
t

3
7
e

r
c
u
l
e

t
r
e

c
r
o
g
r
a
r

.
c
r
c

c
o
r
r
e
c
t
l
y

n
o
w

i
s
t
z
o

c
i
l
'

%
f

Y
o
u

t
r
u
e

0
)
?

$
4
3

Y
L
S

;
C
r
e
e
d

+
r
a
t

n
a
c
r
e

-
e
c

e
f
t
+

i
r
e

f
i
r
s
t

o
w
n
,

h
c
c
a
.
s
e

t
h
i
s

i
s

a

n
e
w

c
r
e

o
f

t
r
e

s
e
-
e

s
p
e
c
i
e
s
.

4
3

w
h
a
t
'
s

t
,
,
e
,

D
u
g

n
o
w

;
t
i
f
.
i
L
f
.

o
p
4
(
C
r
J

/
5

x
r
.
.
.

I-
:.

3
S
S

c
r
c
i
r
a

e
s

s
.
b
i
n
s
:

'
i
t
'
s

t
r
u
r

t
h
a
t

y
o
u
'
v
e

t
v
n
e
o

c
y

s
t
e
n
o
f
n
,

Y
o
u

c
a
m

w
I
s
c

t

-
i

-
.

c

i
t

a
s

o
a
y
i
-
h
:

"
i
t
'
s

t
r
u
e

t
r
a
t

y
o
u

h
s
v
e

n
o
t

t
y
p
e
°

0
"
,

e
v

n
o
t

s
t
e
p
p
i
h
u
.

r
r
e
n

y
o
u

u
s
e

V
w
P
,

i
t
'
s

u
o

t
o

y
o
u

t
o

d
e
c
i
d
e

w
h
e
t
h
e
r

0

'
n

a

r
e
g
i
s
t
e
r

r
e
a
m
s

t
r
u
e

c
r

?
a
l
s
o
.

Y
o
u

s
l
l

f
i
n
d

r
o
e

J
u
'
P

o
c
e
r
a
t
i
o
n

t
o

t
o

v
e
r
y

o
a
n
c
y
.

A
n

i
m
o
o
r
t
a
n
t

t
h
i
n
g

t
o

r
e
,
e
-
o
e
r

S
c
o
u
t

t
u
g
s

i
s

t
h
a
t

t
r
e
y

m
i
g
h
t

I
f

t
h
e

v
a
l
v
e

i
n

t
h
e

B

r
e
g
i
s
t
e
r

i
s
n
'
t

0

c
h

l
o
o
k

l
i
k
e

r
i
s
t
a
c
e
s

a
t

f
i
r
s
t
,

t
u
t

l
a
t
e
r

y
o
u

w
i
l
l

l
e
a
r
n

t
o

s
e
e

t
h
e
i
r

(
u
s
e

(
)
J
.
'
?

t
o

s
e
e
)
,

p
l
e
a
s
e

t
y
p
e

S
C
R
A
T
C
H
.

Y
o
u

1
0

a
n
t
"
-
i
c
s

a
s

f
u
n
n
y
,

o
r

e
v
e
n

u
s
e
f
u
l
.

e
i
e
m
e
n
o
e
r
,

t
h
e

C
o
u
n
t
e
s
s

o
f

L
e
v
i
.
.
.
l
a
c
e

n
e
e
o

t
h
i
s

p
r
o
o
r
o
n

i
n

S
i
m
p
e
r
'
s

m
e
m
o
r
y

v
.

i
n

P
a
r
t

1
7

S
h
e

o
i
s
c
o
v
e
r
e
a

o
u
g
s

I
n

e
c
c
u
a
g
e
'
s

m
a
c
r
i
n
e

w
r
i
e
r

m
a
d
e

i
t

.
0
"

b
e
t
t
e
r

t
o
w
.
.

h
e

o
r
e
a
T
e
d
,

u
n
f
o
r
t
u
n
a
t
e
l
y
,

t
n
a
t

s
p
e
c
i
e

o
f

0
4
4

i
s

r
h
e
a
.

na
6
w
e
e
u
g
g
i
n
g
"

i
s

t
h
e

p
r
o
c
e
s
s

Y
o
u

g
S
e

1
0

C
)

r
-
-
-
-
-
-
:

B
u
g
s
:

"
.
o
a
t

c
a
n

w
e

o
o

t
o

t
h
e
i
r

S
i
p
p
e
r

o
h
o
c
e
a
.
o
h

)
k

A
E
J

P
) Z

V
'
r

Z
t
o

f
i
n
o

a
r
c

t
h
a
n
g
o

b
u
g
s
.

I
t
'
s

Y
5

s
l
o
t

l
i
k
e

p
l
a
y
i
n
g

o
c
t
e
c
t
i
v
e
.

-
-
-
-
2
.
7
_
,

.
-

Y
o
u

r
u
s
t

f
i
n
o

o
u
t

w
h
o

d
i
g

.
t
.
.
_
.
,

g
b

w
h
a
t
,

t
o

w
h
o
m
,

w
h
e
r
e

a
n
d

oa .
w
h
y
.

A

g
o
o
n

m
e
t
h
o
d

o
f

o
e
c
u
g
g
i
n
g

i
s

t
o

o
r
e
t
e
n
o

Y
o
u

a
r
e

t
h
e

S
i
n
c
e
;

(
1
)

(
`
,
1

1
)

c
o
m
p
u
t
e
r

a
n
o

o
b
e
y

e
a
c
h

i
n
s
t
r
u
c
t
i
o
n
.

S
t
a
r
t

w
i
t
h

t
h
e

f
i
r
s
t

o
n
e

t
h
a
t

S
i
m
p
e
r

o
o
e
y
s

w
h
e
n

y
o
u

R
U
N

y
o
u
r

p
r
o
g
r
a
m
.

K
e
e
p

t
r
a
c
k

o
f

t
h
e

v
a
l
u
e
s

i
n

t
h
e

r
e
g
i
s
t
e
r
s

o
n
o

m
e
m
o
r
y

l
o
c
a
t
i
o
n
s

a
n
d

b
e

s
u
r
e

y
o
u

u
s
e

t
h
e

P

r
e
g
i
s
t
e
r

t
o

t
e
l
l

y
o
u

.
h
e
r
e

t
h
e

n
e
x
t

i
n
s
t
r
u
c
t
i
o
n

i
s

i
n

m
e
m
o
r
y
.

P
e
m
e
m
O
t
r
,

t
h
e

S
i
m
p
e
r

c
o
-
o
u
t
e
r

s
e
c
s

I

t
o

t
h
e

n
u
n
o
e
r

i
n

P

J
u
s
t

o
e
f
o
r
e

i
t

o
o
e
y
s

t
h
e

i
n
s
t
r
u
c
t
i
o
n

i
t
'
s

l
o
o
k
i
n
g

a
t
.

G
o
o
d

l
u
c
k
/

(
u
s
e

L
I
S
T

t
o

s
h
e
l
l

0
0
1

:
A
S
K

A

0
0
2

:
J
U
M
P

a

1
:
H
A
L
T

I
f

i
t

i
s
n
'
t

i
n

m
e
m
o
r
y
,

p
l
e
a
s
e

t
y
p
e

i
t

I
n
.

h
o
w

w
e
'
r
e

g
o
i
n
g

t
o

o
u
t

"
D
u
g
"

i
n

i
t
.

S
o
m
e
t
i
n
e
s

p
r
o
g
r
a
m

o
f

y
o
u
r
s

m
a
y

n
o
t

w
o
r
k

t
h
e

w
a
y

y
o
u

t
h
o
u
g
h
t

i
t

w
o
u
l
d
.

S
o
m
e

p
e
o
o
l
e

w
o
u
l
o

s
a
y

t
h
e
r
e

i
s

b
u
g

i
n

i
t
.

T
h
e
s
e

n
u
:
i
s

a
r
e

n
e
i
t
h
e
r

t
h
e

K
i
n
d

e
n
t
o
m
o
l
o
g
i
s
t
s

s
t
u
o
Y
,

n
o
r

a
r
e

t
h
e
y

e
l
e
c
t
r
o
n
i
c

s
c
y
i
n
g

d
e
v
i
c
e
s
.

b
u
g
s

i
n

p
r
o
g
r
a
m
s

c
a
u
s
e

u
n
e
x
p
e
c
t
e
d

t
h
i
n
g
.

t
o

'
e
0
0
0
m
.

F
o
r

e
x
a
m
p
l
e
,

y
o
u
r

p
r
o
g
r
a
m

m
i
g
h
t

r
u
n

o
n

f
o
r
e
v
e
r

w
h
e
n

y
o
u

t
r
o
u
g
n
t

i
t

s
h
o
u
l
o

h
a
l
t
,

o
r

i
t

n
i
g
h
t

h
a
l
t

w
h
o
n

y
o
u

t
h
o
u
g
h
t

i
t

s
h
o
o
l
o
n
'
t
f

o
r

S
i
m
r
e
r

-
i
g
n
t

e
v
e
n

c
o
m
p
l
a
i
n
s

"
I
L
L
E
G
A
L

M
E
M
O
R
Y

R
E
F
E
R
E
N
C
E
"
.

H
e
r
e
'
s

t
h
e

o
u
o

w
e
'
r
e

g
o
i
n
g

t
o

o
u
t

i
n
t
o

y
o
u
r

p
r
o
g
r
a
m
:

0
0
2

1
.
1
0
f
P

8

1

U
s
e

F
I
X

2

t
o

p
u
t

t
h
e

b
u
g
g
y

i
n
s
t
r
u
c
t
i
o
n

J
U
M
P

B

I

I
n
t
o

l
o
c
a
t
i
o
n

2

i
n

p
l
a
c
e

o
f

:
.
r
a
t
'
s

t
h
e
r
e

n
o
b
,
.

P
l
o
s
s
e

L
I
S
T

t
h
e

P
r
o
g
r
a
m

s
o

y
o
u

c
a
n

i
n
s
p
e
c
t

f
t
.

t
d

ID ID P
L

C
o

A
S
.
0

R
O
T
A
T
E

7
1
3
0
0
0
0
.
-
-

c
e
,

S
H
I
F
T

B

4
C

,
.

^
:
c

-
S
t
S
.
,
3

n
e
t

R
C
T
Z
T
E

i
s

C
0
/
0
3
*

u
s
e

c
o
n
t
r
o
l

G

t
o

s
t
o
p

t
r
e

v
o
c
-
a
n

a
n
l

u
s
e

r
:
a

t
o

s
h
a
h
-
;
:

t
n
o

R
O
T
A
T
E

i
n
s
t
r
u
c
t
t
o
n

s
o

t
w
a
t

i
t

T
O
V
C
S

p
l
a
i
t
s

t
o

v

n
i
a
t
,

t

-
a
t

y
o
a
l
r
e

s
x
t
t
s
f
t
e
d
,

t
-
e
n

r
w
o
l
a
c
o

t
h
e

;
D
T
A
%

w
i
t

a

5

-
:
F
T

o
f

V
a
a
l
'

o
n
n
e
h
o
o
s
i
n
g

a
n
d

P
L
A

t
n
a
t

u
n
t
i
l

y
c
u
l
r
e

s
a
t
i
s
f
i
e
d

y
o
e

u
n
c
e
r
s
t
a
n
d

t
r
.

d
i
f
f
e
r
e
n
c
e

b
e
t
w
e
e
n

S
H
I
F
T

:
n
o

R
O
T
A
T
E

w
e
l
l
.

N
o
.

t
h
a
t

y
o
u
'
v
e

h
a
d

s
o
r
e

e
x
p
e
r
i
e
t
c
e

i
n

u
s
i
n
g

S
i
m
p
e
r
'
s

c
o
n
n
a
n
d
s
,

a
n
d

a
s
s
e
n
b
l
y

l
a
n
g
u
a
g
e

a
n
d

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

i
n
s
t
r
u
c
t
i
o
n
s

t
o

w
r
i
t
e

a
n
d

r
u
n

P
r
o
g
r
a
m
s
,

p
l
e
a
s
e

d
r
a
w

l
i
n
e
s

f
r
o
m

t
r
.

i
t
e
m
s

i
n

t
h
e

I
w
I
t
h
a
n
d

c
o
l
u
m
n

t
o

t
h
e
i
r

a
p
p
r
o
p
r
i
a
t
e

c
l
a
s
s

o
n

t
n
.

r
i
g
h
t
s

c
o
n
t
r
o
l

W

L
I
S

A
D
D

A

1
2

7
5

R
U
N

1
1
1
0
0
0
"

f
t
l

S
L
I
D
E

5
/
'

N
E

.

C
O

M
M

A
N

D

S
E

no
LY

 L
A

N
G

U
A

G
L

C
H
I
*
.
i
.

L
A
N
G
U
A
G
E

U
S
T

A

N
U
M
B
E
R

J
U
S
T

G
A
R
B
A
G
E

P
l
e
a
s
e

:
n
o
.

t
h
i
s

c
o

t
u
t
o
r

t
o

M
i
C
O

s
u
r
e

y
o
u

u
n
d
e
r
s
t
a
n
d

h
o
w

t
o

c
l
a
s
s
i
f
y

t
-
e

i
c
e

-
s
,
i
n

t
h
e

l
e
f
t
h
a
t
i
c
t

c
o
l
u
m
n
.

40
S

Y
o
u

P
r
o
b
a
b
l
y

r
e
e
n
t
l
e
r

t
h
a
t

e
a
c
h

S
i
r
p
e
n

i
n
s
t
r
u
c
t
i
o
n
,

w
h
e
t
h
e
r

i
n

a
s
s
e
n
o
l
y

l
a
n
g
u
a
g
e

(
l
i
k
e

P
U
T

P

3
)

o
r

i
n

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

(
l
i
k
e

1
1
2
0
0
0
1
)
*

C
a
n

h
a
w
.

t
h
r
e
e

p
a
r
t
s

(
f
i
e
l
d
s
)

c
o
u
n
t

'
e
m
s

S
o
n
.

i
n
s
t
r
u
c
t
i
o
n
s

n
e
e
d

o
n
l
y

o
n
e

f
i
e
l
d
,

t
h
e

o
o
i
r
a
t
i
o
n

f
i
.
l
d
,

l
i
r
e

H
A
L
T
.

O
t
h
e
r
s

n
e
e
d

o
n
l
y

t
h
e

o
p
e
r
a
t
i
o
n

a
n
d

r
e
g
i
s
t
e
r

f
i
e
l
d
s
,

l
i
k
e

A
S
K
,

T
h
e

r
e
s
t

n
e
e
d

t
h
e

&
c
a
r
e
s
s

f
i
e
l
d

a
s

w
e
l
l
.
'

S
o
m
e

o
f

t
h
e
s
e

i
n
s
t
r
u
c
t
i
o
n
s

u
s
e

t
h
e
i
r

a
d
d
r
e
s
s

f
i
e
l
d
s

I
n

s
p
e
c
i
a
l

w
a
y
s
*

O
P
E
R
A
T
I
O
N

R
E
G
I
S
T
E
R

.
A
D
D
R
E
S
S

T
y
p
e

H
A
L
T

B

2
3

a
n
d

a
n

E
N
T
E
R
,

W
h
a
t

m
a
c
h
i
n
e

i
n
s
t
r
u
c
t
i
o
n

(
n
u
r
g
r
)

d
i
d

S
(
a
P
o
r

p
r
i
n
t

t
o

t
h
e

r
i
g
h
t

o
f

Y
o
u
r

H
A
L
T

i
n
s
t
r
u
c
t
i
o
n

.
1
1
.
.
)
3

7

H
o
w

m
a
n
y

p
a
r
t
s

d
o
s
s

i
t

s
e
e
m

t
o

h
a
v
e

7

D
o
e
s

t
h
e

S
i
m
p
e
r

a
s
s
e
m
b
l
e
r

s
e
e
m

t
o

c
a
r
e

i
f

y
o
u

t
y
p
e

r
e
g
i
s
t
e
r

a
n
d

a
d
d
:
t
e
a
s
-
4
-
n

f
i
e
l
d
s

i
n

a

H
A
L
T

i
n
s
t
r
u
c
t
i
o
n
?

Y
E
S

L
I
S
T

t
h
e

H
A
L
T

y
o
u

J
u
s
t

t
y
p
e
d
.

Y D
o
e
s

t
h
e

a
s
s
e
m
b
l
e
r

c
a
r
e

a
b
o
u
t

h
a
v
i
n
g

a
d
d
r
e
s
s

f
i
e
l
c
s
i
n

A
S
K

i
n
s
t
r
u
c
t
i
o
n
:
?
-
4
1

Y
E
S

T
y
p
e

A
S
K

B

2
3
2

a
n
d

a
n

E
N
T
E
R
,

a
n
d

L
I
S
T

i
t

t
o

s
e
e
,

-
C
1
7
0

R
e
t
e
n
g
e

t
h
a
t

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

h
a
s

a

m
e
m
o
r
y

w
h
i
c
h

h
a
s

i
.
s
.

l
o
c
a
t
i
o
n
s
.

A
n
y

v
a
l
e
t
s

f
r
o
m

1

t
o

2
5
0

c
a
n

r
e
f
e
r

t
o

o
n
e

o
f

t
h
o
s
e

l
o
c
a
t
i
o
n
s

a
n
d

w
h
e
n

i
t

d
o
e
s
,

i
t
'
s

c
a
l
l
e
d

a
n

a
d
d
r
e
s
s
.

O
f

t
h
e

i
n
s
t
r
u
c
t
i
o
n
s

w
h
i
c
h

u
s
e

a
n

a
d
d
r
e
s
s

f
i
e
l
d
,

f
o
u
r

o
f

t
h
e
m

e
X
0
4
C
t

t
h
a
t

!
W
O

t
o

c
o
n
t
a
i
n

s
o
m
e
t
h
i
n
g

o
t
h
e
r

t
h
a
n

n
o
r
m
a
l

a
d
d
r
e
s
s
,

T
h
e
y

a
r
e

P
U
T
,

E
X
C
H
A
N
G
E
,

S
W
I
F
T

a
n
d

R
O
T
A
T
E
,

.4
75

P
l
e
a
s
e

S
C
R
A
T
C
H

t
o

*
*
*
*

S
i
m
p
e
r
'
s

m
e
m
o
r
y

a
n
d

t
y
p
e

i
n

t
h
i
s

o
r
o
d
r
a
m
i

0
0
1

t
C
A
S
K

6

I
t

w
i
l
l

r
e
a
d

e
a
c
h

c
h
a
r
a
c
t
e
r

(
l
e
t
t
e
r
.

n
u
m
b
e
r
,
'

0
0
2

t
P
u
T

P

1

O
P

p
u
n
c
t
u
a
t
i
o
n
)

t
s
a
t

Y
O
U

t
Y
0
o

O
n

t
h
e

t
Y
0
d
o
w
r
i
t
o
r
4

T
h
i
s

p
r
o
g
r
a
m

y
O
U
I
V
e

a
t
b
r
e
0

I
S

r
e
a
l

l
i
f
e

x
a
m
o
l

o
f

w
h
a
t

-
a
t
.
e
m
a
t
i
c
i
a
n
s

c
a
l
l

*
f
u
n
c
t
i
o
n

A

f
u
n
c
t
i
o
n

i
s

l
i
r
e

r
u
l
e

t
h
a
t

l
e
t
s

y
o
u

g
i
v
e

a
n

a
n
s
w
e
r

t
o

s
o
m
e
t
h
i
n
g

t
h
a
t

s
o
m
e
o
n
e

t
e
l
l
s

y
o
u
.

F
o
r

e
x
a
m
o
l
e
,

i
f

y
o
u

h
a
y
.

F
e
n
c
h

t
o

E
n
g
l
i
s
h

d
i
c
t
i
o
n
a
r
y
?

l
i
O
r
e
O
n

C
a
n

g
i
v
e

y
o
u

a

F
r
o
n
c
n

w
o
r
d

a
n
d

y
o
u

c
a
n

g
i
v
e

b
a
c
k

t
h
e

C
o
r
r
e
s
p
o
n
d
i
n
g

E
n
g
l
i
s
h

w
o
r
d
.

T
h
e

r
u
l
e

t
h
e
r
e

i
s

o
e
f
f
n
e
d

b
y

t
h
e

d
i
c
t
i
o
n
a
r
y
.

I
t
'
s

a
n

e
x
a
m
p
l
e

o
f

t
r
a
n
s
l
a
t
i
o
n
.

T
h
e

f
u
n
c
t
i
o
n

(
r
u
l
e
)

t
h
a
t

t
h
e

p
r
o
g
r
a
m

y
o
u

J
u
s
t

w
r
o
t
e

w
i
s
e

i
s

d
e
f
i
n
e
d

b
y

t
h
e

C
A
S
K

o
p
e
r
a
t
i
o
n
,

:
t

t
r
a
n
s
l
a
t
e
s

e
a
c
n

t
y
p
e
w
r
i
t
e
r

c
h
a
r
a
c
t
e
r

(
l
e
t
t
e
r
s
,

d
i
g
i
t
s

a
n
d

p
u
n
c
t
u
a
t
i
o
n
)

i
n
t
o

a

p
a
r
t
i
c
u
l
a
r

2

-
d
i
g
i
t

n
u
m
b
e
r

a
n
d

o
u
t
s

t
h
a
t

n
u
m
b
e
r

i
n
t
o

t
h
e

r
e
g
i
s
t
e
r

y
O
u
n
a
n
e
4
k
t
h
e

i
n
s
t
r
u
c
t
i
o
n
.

W
h
i
c
h

r
e
g
i
s
t
e
r

w
i
l
l

t
h
a
t

b
e

i
n

t
h
i
s

C
)

p
r
o
g
r
a
m

"
7

P
l
e
a
s
e

f
i
l
l

i
n

t
h
e

f
o
l
l
o
w
i
n
g

t
a
b
l
e

o
f

c
h
a
r
a
c
t
e
r
s

a
n
d

t
h
e
i
r

V
n
u
m
b
e
r
s

s
o

t
h
a
t

y
o
u

c
a
n

s
e
e

w
h
a
t

t
h
e

C
A
S
K

o
p
e
r
a
t
i
o
n
'
s

f
u
n
c
t
i
o
n

l
o
o
k
s

l
i
k
e
.

T
o

C
o

t
h
i
s
,

R
U
N

y
o
u
r

P
r
O
p
P
e
m

w
i
t
h

E
N
T
E
R

a
n
d

o
b
s
e
r
v
e

t
h
e

r
e
g
i
s
t
e
r
'
s

v
a
l
u
e
s
.

C
A
S
K

t
r
a
n
s
l
a
t
e
s

t
h
i
s

t
y
p
e
w
r
i
t
e
r

c
h
a
r
a
c
t
e
r

C
(
n
o
u
t
)

A

A 2 9 a

i
n
t
o

t
h
i
s

n
u
m
b
e
r

(
o
u
t
p
u
t
)

D
a
r
t

7
41

65

Y
o
u

h
a
y
s

w
r
i
t
t
e
n

(
s
t
o
r
e
d
)

p
r
o
g
r
a
w
s

i
n

t
h
e

S
i
m
p
e
r

c
m
p
u
t
e
r
'
s

m
e
m
o
r
y

J
u
s
t

a
s

i
f

y
o
u

m
e
o

b
e
e
n

-
r
i
t
i
n
g

l
i
s
t

o
f

t
h
i
n
g
s

p
o
r
n

c
m

C
o
c
o
,

f
o
r

a

f
r
i
e
-
d

t
o

d
o

f
c
r

y
o
u

w
h
e
n

y
o
u

t
O
1
C

h
i
m

t
o
.

Y
o
u

a
l
s
o

h
a
v
e

m
a
d
e

S
i
m
p
e
r

r
e
m
e
m
b
e
r

t
h
i
n
g
s

(
n
y
.
b
i
p
p
e
)

i
t

d
o
e
s
n
'
t

u
n
o
e
r
s
t
a
m
d

a
s

i
n
s
t
r
u
c
t
i
o
n
s
,

R
e
'
a
m
b
e
r
i
n
g

t
h
i
n
g
s

a
n
d

o
b
e
y
i
n
g

"
s
t
o
r
e
d

o
r
o
o
r
m

a
r
e

I
m
o
o
r
t
a
n
t
.

T
h
m
y

m
i
k
e

c
o
m
o
u
t
e
r
e

o
i

f
f
f
f
f

n
t

f
r
o
m

o
r
d
i
n
a
r
y

m
a
c
h
i
n
e
s
.

T
h
e

i
n
s
t
r
u
c
t
i
o
n
s

t
h
a
t

c
o
m
p
u
t
e
r

c
a
n

u
n
d
e
r
s
t
a
n
d

a
r
e

i
m
p
o
r
t
a
n
t

t
o
o
,

h
o
t

J
u
s
t

a
n
y

i
n
s
t
r
u
c
t
i
o
n
s

w
i
l
l

d
o
,

F
o
r
t
u
n
a
t
e
l
y
,

t
h
e

i
n
s
t
r
u
c
t
i
o
n
s

t
h
a
t

S
i
m
p
e
r

k
n
o
w
s

h
o
w

t
o

o
b
e
y

(
s
e
e

t
h
e

l
i
s
t

i
n

P
e
r
t

6
)

a
r
e

m
o
r
e

t
h
a
n

e
n
o
u
g
h

t
o

l
e
t

y
o
u

I

r
m
e
-
b
o
r
e
`

w
h
a
t

y
o
u

w
a
n
t

m
e

t
o

o
p
r
o
g
r
a
m

t
h
e

5
i
n
P
e
t

c
o
m
p
u
t
e
r

t
o

s
o
l
v
e

a
n

I

k
n
o
w

e
n
o
u
g
h

0
4

P
r
o
b
l
e
m

t
h
a
t

a
n
y

o
t
h
e
r

c
o
m
p
u
t
e
r

P
e
n

s
o
l
v
e
.

F
i
n
a
l
l
y
,

c
o
m
p
u
t
e
r

m
u
s
t

a
l
w
a
y
s

f
a
i
t
h
f
u
l
l
y

o
b
e
y

a
n
y

o
r
o
g
r
e
m

y
o
u

w
r
i
t
e
.

I
t

m
u
s
t
n
'
t

b
e

f
i
c
k
l
e

a
n
d

o
e
c
i
d
e

n
o
t

t
o

o
b
e
y

y
o
u
r

i
n
s
t
r
u
c
t
i
o
n

i
n

l
o
c
a
t
i
o
n

2
5
0

j
u
s
t

b
e
c
a
u
s
e

i
t
s

l
o
n
g

r
e
a
c
h
.

I
t

m
u
s
t

h
a
v
e

c
h
e
e
r

w
a
y

o
f

k
n
o
w
i
n
g

m
n
i
C
h

I
n
s
t
r
u
c
t
i
o
n

i
s

t
o

b
e

o
b
e
y
e
d

n
e
x
t
,

P
:

T
h
o
s
e

t
h
r
e
e

o
r
e

b
a
s
i
c

a
b
i
l
i
t
i
e
s

w
h
i
c
h

m
a
k
e

m
o
d
e
r
n

c
o
m
p
u
t
e
r
s

s
e
e
s

t
o

s
a
t
i
s
f
y

C
h
u
r
c
h
'
s

t
h
e
s
i
s

(
r
e
m
e
m
b
e
r

P
a
r
t

1
7
)
t

t
h
a
t

a
n
y

p
r
o
b
l
e
m

a

h
u
m
a
n

c
a
n

s
o
l
v
e

w
i
t
h

p
e
n
c
i
l

e
n
d

p
a
p
e
r

c
a
n

b
e

s
o
l
v
e
d

b
y

c
o
m
p
u
t
e
r
,

O
r
,

i
n

o
t
h
e
r

w
o
r
d
s
,

i
f

o
n
e

P
i
e
r
s
o
n

c
a
n

t
e
l
l

a
n
o
t
h
e
r

h
o
w

t
.

s
o
l
v
e

e
r
O
b
l
e
m
,

t
h
e
n

h
e

o
r

s
h
e

c
a
n

t
e
l
l

a

c
o
m
p
u
t
e
r

h
o
w

t
o

s
o
l
v
e

f
t
,14

.1
2:

00
g:

I

o
b
e
y

y
o
u
r

y
o
u
r

P
r
O
C
P
a
m
O

q
,
y
e
r
y

c
a
r
e
f
u
l
l
y
.
,

5
2
5

.
O
r
e
l
$

a
n

1
:
0
0

f
r
i
e
n
p

f
r
o

t
h
e

f
i
r
s
t

t
e
s
t

y
o
u

t
o
o
k
)

S a 10

I
S

1
7

2
9

T
i
s

t
a
b
l
e

d
e
f
i
n
e
s

a

f
u
n
c
t
i
o
n

.
n
o
s
e

r
u
l
e

C
o
r
p
o
r
a
-
)

y
o
u

w
e
r
e

s
k
e
o

t
o

C
) 0

f
i
n
s
.

I
f

y
o
u

c
a
n
'
t

f
i
g
u
r
e

o
u
t

t
n
e

r
u
l
e
,

a
s
k

a

t
u
t
o
r
.

h
o
w
,

p
l
e
a
s
e

h
i
1
1

w
r
i
t
e

a

P
r
O
g
r
a
-

t
o

a
c
c
e
n
t

e
a
c
h

v
a
l
u
e

o
n

t
h
e

l
e
f
t

a
s

e
n

i
n
p
u
t

a
n
d

C
d
t
p
U
t

1
-
4

c
o
t
i

(
t
y
p
e
)

t
n
e

c
p
r
r
e
s
o
p
n
a
i
n
g

v
a
l
u
e

o
n

t
h
e

r
i
g
h
t
.

U
s
e

S
C
R
A
T
C
H

t
o

e
r
a
s
e

:
3
-

C
F

S
i
m
p
e
r
'
s

r
e
r
o
r
y
.

h
e
r
e

a
r
m

t
h
e
i
n
s
t
r
u
c
t
i
o
n
s
.

A
l
l

y
o
u

n
e
e
d

t
o

d
o

i
s

1
-
-
,

A
D

p
u
t

t
h
e
n

i
n
t
o

S
i
m
p
e
r
'
s

m
e
m
o
r
y

i
n

t
h
e

r
i
g
h
t

P
r
o
s
e
(

-

-
I

e
r

P
U
T

5

9

/

G
E
T

T
r
E

i
M
P
S
E
R

9

S
T
O
R
E

6

1
0
0

/

S
A
V
E

I
T

I
N

L
O
C
A
T
I
O
N

1
0
0

A
S
<

A

/

R
E
:
W
E
S
T

A
N

I
N
P
u
T

N
C
:
4
3
E
R

F
R
O
H

H
U
M
A
N

s
T
a
R
i

A

1
0
1

/

S
A
v
E

I
T

I
N

1
0
1

A
C
C

A

1
0
1

/

D
O
U
B
L
E

T
H
E

I
N
P
U
T

N
u
'
R
E
R

b
i
d

A
C
O

I

1
0
0

/

A
O
D

9

T
O

T
r
E

C
O
U
P
L
E
D

"
;
,
,
M
B
E
R

i
l
)

h
R
I
T
E

A

/

T
Y
P
E

O
U
T

T
h
E

R
E
S
u
u
T

(
O
U
T
P
U
T
)

F
O
R

H
U
M
A
N

-
P
r

Q
P
U
T

P

1

/

0
0

I
T

A
L
L

O
V
E
R

A
G
A
I
N

C
)

\
)

g 9
3

D
e
e
s

t
h
i
s

p
r
o
g
r
a
m

p
r
o
d
u
c

t
h
e

f
u
n
c
t
i
o
n

t
a
b
l
e

a
t

t
h
e

t
o
p

o
f

t
h
i
s

P
e
g
.
?

N
O

C
0

$
3
,

C
h
e
c
k

y
o
u
r

P
r
o
g
r
a
m

o
r

p
e
t

h
e
l
p
.

C
O

)
(

F
i
l
l

.
n

s
o
r
e

n
e
w

i
n
p
u
t
s

a
n
d

o
u
t
p
u
t
s

f
o
r

t
h
e

f
u
n
c
t
i
o
n

y
o
u
r

P
r
o
g
r
a
m

h
a
s

d
e
f
i
n
e
s
(

t
-
1
7
.
.
?

6
.
.
.
L
o
s

c
d

8
8
8

8
1
:
5
7
.
2
.
.

M M 1
-
1

C
t
.
.
/

V
'
-
.
4

:
i
l
,

.
Z
P
.
.
.
1
,

:
7
:
1
J
;
.

T
y
p
e

c
o
n
t
r
o
l

G
.

C
o
u
l
d

w
e

c
r
a
n
;
e

t
h
e

P
U
T

P

1

i
n
s
t
r
u
c
t
i
o
n

t
o

P
U
T

P

3

a
n
d

s
t
i
1
1

g
e
t

t
h
e

S
a
r
e

r
e
s
v
I
t
?

N
O

N
.
.
4
6
T
r
y

i
t
.

4
8
3

I
f

y
o
u

l
o
o
k

a
t

t
h
e

t
a
b
l
e

a
t

t
h
e

b
o
t
t
o
m

o
f

t
h
e

s
e
c
o
n
d

p
a
g
e

i
n

P
a
r
t

6
,

y
o
u
'
l
l

s
e
e

t
h
a
t

C
A
S
K

c
a
n

t
r
a
n
s
l
a
t
e

a
n
y

t
y
p
e
w
r
i
t
e
r

k
e
y

i
n
t
o

a

2
c
i
c
i
f
t

n
w
-
t
e
r
e

S
e
c
a
.
s

o
f

t
h
i
s
,

C
A
S
K

i
s

c
a
l
l
e
d

'
t
o
t
a
l
'

f
u
n
c
t
i
o
n
,

h
h
e
n

t
h
e

S
i
r
p
e
r

c
o
m
p
u
t
e
r

e
x
a
c
4
t
e
s

O
b
e
y
s
;

y
o
u
r

C
A
S
K

i
n
s
t
r
u
c
t
i
o
n
,

t
h
e

k
e
y

y
o
u

t
y
p
e

i
s

c
a
l
l
e
d

t
h
e

'
I
n
p
u
t
'

t
o

C
A
S
K
.

A
n

i
n
p
u
t

i
s

w
h
a
t

y
o
u

S
l
y
.

(
t
e
l
l
)

a

f
u
n
c
t
i
o
n
.

A
l
l

f
u
n
c
t
i
o
n
s

'
u
s
t

h
a
l
o
s

a
t

l
e
a
s
t

o
n
e

i
n
p
u
t

b
e
f
o
r
e

t
h
e
y

c
a
n

d
e
c
i
d
a

b
o
a
t

v
a
l
u
e

t
o

p
r
o
d
u
c
e

(
o
u
t
p
u
t
)
)

F
u
n
k
y

F
u
n
c
t
i
o
n

d
r
o
p

f
r
i
p
;
i
t
s

h
a
r
e

g
o
t

y
o
u
r

o
u
t
p
u
t

h
e
r
s

(
s
p
o
u
t

p
u
t
)

n
o

t
u
r
n

m
y

c
r
a
n
k

(
e
x
e
c
u
t
e

A
y

i
n
s
t
e
u
l
t
i
o
n
s
)

Y
o
u

n
a
y

r
e
m
e
m
b
e
r

t
h
a
t

S
i
m
P
e
r

a
c
c
e
p
t
s

t
w
o

k
i
n
d
s

o
f

l
i
t
e
r
a
l
s
.

T
h
e

f
i
r
s
t

k
i
n
d

a
r
e

I
r
P
s
i
t
a
.
.
.

(
h
i
n
t
(

s
e
e

P
a
r
t

3
)
.

T
h
e

C
A
S
K

o
p
e
r
a
t
i
o
n

m
a
k
e
s

t
h
e

S
i
m
p
e
r

C
o
m
p
u
t
e
r

a
c
c
e
p
t

t
y
p
e
w
r
i
t
e
r

c
h
a
r
a
c
t
e
r
s

a
s

l
i
t
e
r
a
l
s

t
o
o
,

h
h
y

a
r
e

t
h
e
y

l
i
t
e
r
a
l
s
?

B
e
c
a
u
s
e

C
A
S
K

a
l
w
a
y
s

P
r
o
O
u
C
O
S

t
h
e

s
e
x
*

n
u
m
b
e
r

(
c
u
t
o
u
t
)

f
o
r

e
a
c
h

c
h
a
r
a
c
t
e
r

y
o
u

t
y
p
e

(
i
n
p
u
t
)
.

S
o

t
h
e

t
a
b
l
e

i
n

P
a
r
t

d
e
f
i
n
e
s

t
h
e

C
A
S
K
!
'

f
u
n
c
t
i
o
n

f
o
r
e
v
e
r
.

I
f

y
o
u

m
e
m
o
r
i
z
e
d

I
t
o

y
o
u

w
o
u
l
d

a
l
w
a
y
s

k
n
o
w

w
h
a
t

n
u
m
b
e
r

e
a
c
h

k
e
y

c
o
r
r
e
s
p
o
n
d
s

t
o
.

w
h
e
n

S
i
m
p
e
r

e
x
e
c
u
t
e
s

C
S
S
4
,

t
h
e

v
a
l
u
e

f
o
r

e
a
c
h

t
y
p
e
w
r
i
t
e
r

k
e
y

I
s

n
o

s
e
c
r
e
t

(

P
e
r

L
O
C
I

L
i
t
e
r
a
l

c
o
e
s
n
'
t

h
i
d
e

a
n
y
t
h
i
n
g

e
i
t
h
e
r
)
,

5
7
5

P
l
e
a
s
e

u
s
e

t
h
e

N
A
M
E

C
o

-
-
f
r
o

t
o

w
i
l
t
'

i
t

e
a
s
i
e
r

t
o

r
e
f
e
r

t
o

t
h
e

l
o
c
a
t
i
o
n

t
h
a
t

m
a
s

9

i
n

i
t

b
y

t
Y
o
i
n
g
l

N
A
P
E

1
0
0

k
l
%
E

a
n
c

t
r
e
n

F
i
x

l
o
c
a
t
i
o
n

2

s
o

t
h
a
t

i
t

i
s

S
T
C
F
.
E

B

N
I
N
E
.
.

Y
o
u

c
a
n

s
n
o
o
k

t
h
a
t

y
o
u

r
a
v
e

(
a
s
k

f
o
r

P
o
l
o

I
f

y
o
u

c
a
n
'
t

.
.
.
.
.
.

)
.

r
e
a
l
l
y

n
a
-
e
o

l
o
c
a
t
i
o
n

1
0
C

w
i
t
h

t
h
e

s
r
.
0
0
l

N
I
N
E

b
y

:
w
i
n
o

a
r
o
t
h
e
r

n
e
w

c
e
h
m
e
e
e
s

N
A
P
E
S

a
n
o

e
i
t
h
e
r

E
h
T
L
R

o
r

R
E
T
U
R
N

(
t
r
y

t
t
o
t
n

t
o

s
e
e

w
h
a
t

n
a
c
o
e
n
s
)
.

P
l
e
a
s
e

c
h
a
n
g
e

t
h
e

P
U
T

P

1

i
n
s
t
r
u
c
t
i
o
n

t
o

P
U
T

P

3

i
f

y
o
u

h
a
v
e
n
'
t

a
l
r
e
a
d
y
.

O
w
h
a
t
'
s

t
h
e

d
i
f
f
e
r
e
n
c
e
?

.
!
1
.
:
j
s

-
I
r
e
.
e
:

4
4
c

*
s
i
r
s

n
i

-
i
/

h
o
w

u
s
e

F
I
X

t
o

c
h
a
n
g
e

l
o
c
a
t
i
o
n

6

t
o

b
e

A
D
D

A

N
I
N
E
.

L
I
S
T

v
e
e
r

o
r
O
g
r
a
m

A
s
t
e
r

t
h
e

i
r
s
t
r
u
c
t
i
o
n
s

P
U
T

B

9

a
n
d

S
T
O
R
E

5

1
0
0

h
a
v
e

b
e
e
n

e
x
e
c
e
t
e
d

o
n
c
e

N
J
.

b
y

t
h
e

S
i
P
e
r

c
o
r
o
u
t
e
r
s

w
i
l
l

t
h
e

v
a
l
u
e

i
n

l
o
c
a
t
i
o
n

1
0
0

a
v
e
r

O
r
a
n
g
e
?

V
/

w
i
t
h

E
N
T
E
R
,

c
i
f

g
Y
E
S *

5
3
5

av
ok

e
:I

Ii
rb

el
y.

1/
44

1
-
J

D
o

t
h
e

a
d
d
r
e
s
s

f
i
e
l
d
s

o
f

t
h
e

t
w
o

i
n
s
t
r
u
c
t
i
o
n
s

y
o
u
'
v
e

c
h
a
n
c
e
d

s
t
i
l
l

r
e
f
e
r

\
J
D

c
r
.

t
o

t
h
e

r
i
g
h
t

r
e

o
r
y

l
o
c
a
t
i
o
n

(
t
o
e

o
n
e

t
h
a
t

y
o
u

w
a
n
t

t
o

h
a
v
e

9

i
n
)
?

_
_
- E
S

_
-
.

N
O

T
h
e
y

s
h
o
u
l
d
.

A
s
k

f
o
r

h
e
l
p
.

C
3

D
o

Y
O
U

t
h
i
n
k

i
t
'
s

e
a
s
!
t
r

t
o

r
e
m
e
m
b
e
r

t
h
a
t

t
h
e

s
v
r
b
o
l
i
c

a
o
o
r
e
s
s

N
I
N
E

h
a
s

t
h
e

v
a
l
u
e

9

t
h
a
n

t
o

r
e
m
e
m
b
e
r

t
h
a
t

l
o
c
a
t
i
o
n

1
0
0

(
l
i
t
e
r
a
l

a
o
o
r
e
s
s
)

h
a
s

t
h
e

v
a
l
u
e

9
?

3
e
.
f
.
%
.

C
o P
u

h
o
w

u
s
e

h
A
m
E

t
o

g
i
v
e

a
n
y

n
a
m
e

y
o
u

°
l
e
a
s
e

(
w
i
t
h

u
p

t
o

6

l
e
t
t
e
r
s
)

C
O

t
o

l
o
c
a
t
i
o
n

1
0
1
.

T
h
e
n

u
s
e

F
I
X

t
o

c
h
a
n
g
e

t
h
e

i
n
s
t
r
u
c
t
i
o
n
s

i
n

l
o
c
a
t
i
o
n
s

4

a
n
d

S

s
o

t
h
a
t

t
h
e
y

u
s
e

t
h
a
t

n
a
m
e

(
s
y
m
b
o
l
i
c

a
d
d
r
e
s
s
)
.

U
s
e

N
A
V
E
S

t
o

1
.
7
.
.
.

t
e
e

a
l
l

t
h
e

n
a
m
e
s

Y
o
u
'
v
e

d
e
f
i
n
e
d
,

N
h
a
t

n
a
m
e

o
l
d

y
o
u

g
i
v
e

t
o

l
o
c
a
t
i
o
n

(
1
)

e
4

1
0
1
7

,
V
-
:
!
,

,
W
h
e
t
'
s

t
h
a
t

n
a
m
e
'
s

v
a
l
u
e

r
i
g
h
t

m
o
w
:

g
e
f
l
. l

,
(
t
r
y

i
t

i
f

y
o
u

d
o
n
'
t

k
n
o
w
s

b
u
t

b
e
f
o
r
e

d
o
i
n
g

t
h
e

n
e
x
t

D
O
O
W
,

c
h
a
n
g
e

t
h
e

m
i

P
U
T

P

9

B
e
c
k

t
o

e
a
s
t

i
t

w
a
s

b
e
f
o
r
e
,

a
n
d

c
h
e
c
k

t
h
a
t

t
h
e

D
r
o
o
p
.
,

w
o
r
s
e

e
h
)
,

L
I
S
T

y
o
u
r

p
r
o
g
r
a
m
s

R
U
N

i
t

a
g
a
i
n

a
n
d

a
s
k

f
o
r

r
e
l
P
s

)
(

W
h
a
t

v
a
l
u
e

i
s

I
n

l
o
c
a
t
i
o
n

1
0
0
?

C
G
i
l
d

t
h
e

i
n
s
t
r
u
c
t
i
o
n
s

P
U
T

8

9

a
n
d

S
T
O
R
E

8

1
0
0

b
e

c
h
a
n
g
e
d

t
o

P
U
T

A

9

a
n
d

t
h
e
m

W
i
t
h

F
I
X

a
n
d

R
U
N

t
h
e

p
r
o
g
r
a
m

a
g
a
i
n
,

e
f
f
e
c
t
i
n
g

t
h
e

p
r
o
g
r
a
m
?

N
O

C
h
a
n
g
e

1
S
T
3
R
E

A

1
0
0

w
i
t
h
o
u
t

'
,
"
P

r
\

,
(
^
P

.
"
-
^
"
'

"
*
.
<
,
-
.
i
.
-

,
.

!
:
"

,
7
1
.
-
N
,

K
A

Y
?

.
1
;
7

6
1

.
;
.
:

7
,
1
"

'
'
'
'

;

W
h
e
t

w
o
u
l
d

h
a
r
m
e
n
s
I
f

t
o
e

P
U
T

8

9

i
n
s
t
r
u
c
t
i
o
n

w
a
s

c
h
a
n
g
e
d

t
o

P
U
T

P

9
?

.
%

.
.

.
.
.
.
4

.
t
.
.
.
,

.
-
.
-
-
,
,
t
,
.
.
.
.

,

,
,
-

X

4
0
,

)
.

f

.

%

.

j
.

.
*
-

I

N
a
m
e
s

y
o
u

m
a
k
e

w
i
t
h

N
A
M
E

c
a
n

b
e

a
n
y
t
h
i
n
g

a
s

l
o
n
g

a
s

t
h
e
y
i

1
.

S
t
a
r
t

w
i
t
h

l
e
t
t
e
r
.

2
.

C
o
n
t
a
i
n

o
n
l
y

l
e
t
t
e
r
s

a
n
d

n
u
m
b
e
r
s
,

3
.

H
a
v
e

n
o

m
o
r
e

t
h
a
t

s
i
x

c
h
a
r
a
c
t
e
r
s
.

N
5

r

A
'

J t
i
t

P
a
r
t

9

6
1
5

m
o
s
t

c
o
+
o
u
t
e
r

l
a
n
o
u
g
e
e

t
h
a
t

a
r
e

l
i
k
e

S
i
m
p
e
r

h
a
v
e

s
e
v
e
r
a
l

t
y
p
e
s

o
f

a
d
d
r
e
s
s
e
s

(
n
e

-
a
s

f
o
r

-
e

-
o
r
y

l
o
c
a
t
i
o
n
s
)
.

O
n
e

!
c
i
a
o

y

b
e

m
o
r
e

u
s
e
f
u
l

t
h
a
n

s
m
o
t
h
e
r

i
n

a

p
a
r
t
i
c
u
l
a
r

i
n
s
t
r
u
c
t
i
o
n

o
r

c
o
-

-
a
n
d
.

Y
o
u
'
v
e

u
s
e
d

l
i
t
e
r
a
l
s

C
m
u
-
b
a
r
s
)

i
s

a
o
o

s
s
s
s
s
s

(
l
i
k
e
!

A
G
O

A

1
0
0

o
r

L
I
S
T

5
)
.

Y
o
u
'
v
e

a
l
s
o

u
s
e
d

s
y
m
b
o
l
s

(
t
i
k
e
*

A
D
D

A

N
I
N
E

o
r

D
u
m
f
.

N
/
'
.

)
.

H
e
r
o
i
c

a

n
e
w

k
i
n
d

o
f

a
d
d
r
e
s
s
.

I
t
'
s

c
a
l
l
e
d

r
e
l
a
t
i
v
e

a
d
d
r
e
s
s

b
e
c
a
u
s
e

f
t

r
e
f
e
r
s

t
o

l
o
c
a
t
i
o
n

(
t
a
r
g
e
t
)

t
h
a
t

i
s

a

c
e
r
t
a
i
n

d
i
s
t
a
n
c
e

a
w
a
y

f
r
o
m

i
g
i
v
e
n

l
o
c
a
t
i
o
n

(
f
t
'
s

r
e
l
a
t
e
d

t
o

t
h
e

g
i
v
e
n

l
o
c
a
t
i
o
n
)
.

T
h
e

g
i
v
e
n

l
o
c
a
t
i
o
n

c
a
n

b
e

t
h
e

l
o
c
a
t
i
o
n

y
o
u

a
r
e

a
t

n
o
w
,

f
o
r

w
h
i
c
h

y
o
u

c
a
n

u
s
e

t
h
e

s
o
e
c
i
a
l

n
a
m
e

N
.
°
,

o
r

a
n
y

l
i
t
e
r
a
l

o
r

s
y
m
b
o
l
i
c

a
d
d
r
e
s
s
.

T
h
e

t
a
r
g
e
t

i
s

r
e
l
a
t
e
d

t
o

t
h
e

g
i
v
e
n

l
o
c
a
t
i
o
n

b
y

z
e
r
o
,

o
r

a

p
o
s
i
t
i
v
e

o
r

n
e
g
a
t
i
v
e

n
u
m
b
e
r
.

H
e
r
e

a
r
e

s
o
m
e

e
x
a
m
p
l
e
s
!

L
e
t
'
s

s
e
e
,

e
v
e
r
y
t
h
i
n
g

i
s

r
e
l
a
t
i
v
e
,

s
o

i
f

I
'
m

h
e
r
e

t
h
e
n

h
e
r
e

i
s

o
v
e
r

t
h
e
r
e

A
D
D

A

1
0
0
+
3

L
I
S
T

N
I
N
E
-
4

P
U
T

P

0
,
5

S
L
I
D
E

.
/
.
+
2
3

D
U
M
P

1
0
/
1
0
+
6

D
I
V

B

T
W
O

-
1

P
l
e
a
s
e

u
s
e

S
C
R
A
T
C
H

t
o

c
l
e
a
r

S
i
m
p
e
r
'
s

m
e
m
o
r
y

a
n
o

t
h
e
n

t
y
p
e

t
h
e

i
n
s
t
r
u
c
t
i
o
n

P
U
T

P

w
i
t
h

a
n

E
N
T
E
R
.

W
h
a
t

m
a
c
h
f
r
e

l
a
n
g
u
a
g
e

i
n
s
t
r

.
a
c
t
i
o
n

d
i
d

t
h
e

a
s
s
e
m
b
l
e
r

P
r
o
d
u
c
e
?

.
.
.
1
1
2
:
4
=
c
4

I
.

t
h
e

a
d
d
r
e
s
s

p
a
r
t

o
f

i
t

(
r
i
g
h
t

t
h
r
o
e

d
i
g
i
t
s
)

t
h
e

s
a
m
e

a
s

t
h
e

s
o
a
p
y
.
s

o
f

t
h
e

l
o
c
a
t
i
o
n

t
h
a
t

P
U
T

P

i
s

i
n
?

1
1
)

N
D

I
t

s
h
o
u
l
d

b
e
t

T
o

S
i
m
p
e
r
,

a

d
o
t

C
.
)

i
n

a
n

a
d
d
r
e
s
s

a
l
w
a
y
s

m
e
a
n
s

°
t
h
e

a
d
d
r
e
s
s

I
'
m

a
t

n
o
w
°
.

0
S

A

n
e
w

c
o
m
m
e
n
d
:

F
O
R
G
E
T

w
i
l
l

h
e
l
p

Y
O
U

p
e
t

r
i
o

o
f

n
a
.
e
a

w
h
i
c
h

y
o
u
r

o
r
c
g
r
a
h

n
o

l
o
n
g
e
r

u
s
e
s

a
s

a
d
d
r
e
s
s
e
s

C
r

s
s
s
s
s

n
o
e
s
)

i
n

i
n
s
t
r
u
c
t
i
o
n
s
.

Y
o
u

c
a
n

u
s
e

F
O
R
G
E
T

t
o

e
r
a
s
e

t
h
e

n
a
m
e

y
o
u

u
s
e
d

f
o
r

l
o
c
a
t
i
o
n

1
0
1

b
e
f
o
r
e
.

F
i
r
s
t

u
s
e

N
A
P
E
S

t
o

c
o

-
n
a
n
d

t
h
e

S
f
.
p
e
r

i
n
t
e
r
p
r
e
t
e
r

t
o

S
h
o
w

y
o
u

a
l
l

t
h
e

n
a

-
e
s

y
o
u

h
a
v
e

c
r
e
a
t
e
°
,

h
o
w

t
y
p
e

F
O
R
G
E
T
,

s
p
a
c
e
,

a
n
y

n
a
m
e

t
h
a
t

y
o
u
r

p
r
o
g
r
a
m

i
s
n
'
t

u
s
i
n
g

6
3

a
n

a
d
d

s
s
s
s
s

t
h
e
n

t
y
p
e

R
E
T
U
R
N
.

U
s
e

N
A
P
E
S

a
g
a
i
n

t
o

c
h
e
c
k

t
h
a
t

w
h
a
t

y
o
u

f
o
r
g
o
t

w
a
s

r
e
a
l
l
y

d
.

N
o
w

w
r
i
t
e

a

p
r
o
g
r
a
m

o
n

y
o
u
r

o
w
n

t
o

d
e
f
i
n
e

a

o
f
f

s
s
s
s
s

t

f
u
n
c
t
i
o
n

f
r
o
m

t
h
e

r
i
m
e

y
o
u

h
a
v
e
.

Y
o
u

m
a
y

w
a
n
t

t
o

S
C
R
A
T
C
H

y
o
u
r

p
r
e
s
e
n
t

p
r
o
g
r
a
m
.

H
e
r
e

a
r
e

s
o
m
e

s
a
m
p
l
e

f
o
r
m
u
l
a
s
!

(
i
n
p
u
t

x

i
n
p
u
t
)

3

=

o
u
t
p
u
t

i
n
P
u
t
l

+

(
i
n
o
u
t
2

-

3
)

s

o
u
t
o
u
t

2

x

i
n
p
u
t
)

/

f
n
o
u
t
2

i
s

o
u
t
p
u
t

N
o
t
i
c
e

t
h
a
t

t
h
e

l
a
s
t

t
w
o

f
o
r
m
u
l
a
s

r
e
o
u
i
r
e

t
h
a
t

t
h
e

p
r
o
g
r
a
m

y
o
u

w
r
i
t
e

f
o
r

t
h
e
m

A
S
K

t
w
o

i
n
o
u
t

v
a
l
u
e
s

f
r
o
m

y
o
u
.

T
h
e

l
a
s
t

f
o
r
m
u
l
a

r
e
q
u
i
r
e
s

t
h
a
t

a

p
r
o
g
r
a
m

u
s
e

D
I
V
I
S
I
O
N
,

I
n

S
i
m
p
e
r
,

D
I
V

r
e
a
l
l
y

t
a
k
e
s

t
w
o

m
e
m
o
r
y

l
o
c
a
t
i
o
n
s
,

o
n
e

f
o
r

t
h
e

D
I
V

i
t
s
e
l
f

D
I
V

A

N
U
M
B
E
R

a
n
d

o
n
e

i
m
m
e
d
i
a
t
e
l
y

f
o
l
l
o
w
i
n
g

l
o
c
a
t
i
o
n

P
U
T

P

T
O
O
B
I
G

w
h
i
c
h

t
h
e

D
I
V

m
a
s
t
s

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

c
7
:
7
s
7
"
.

I
f

y
o
u

a
t
t
e
m
p
t

t
o

d
i
v
i
d
e

b
y

x
e
r
o
'
C
w
h
i
c
h

i
n

m
o
s
t

c
o
m
p
u
t
e
r
s

i
s

u
n
d
e
f
i
n
e
d
)
.

U
s
u
a
l
l
y

H
A
L
T

i
n

t
h
e

l
o
c
a
t
i
o
n

a
l
t
e
r

a

D
I
V

i
s

s
u
f
f
i
c
i
e
n
t
.

T
h
e
m

y
c
u
r

P
r
o
g
r
a
m

w
i
l
l

s
t
o
p

i
f

t
h
e
r
e
'
s

a

b
u
g

w
h
i
c
h

m
i
g
h
t

t
r
y

d
i
v
i
s
i
o
n

b
y

z
e
r
o
,

C
2 0

R
e
n
e
r
b
o
r

t
o

N
A
)
E

s
o
m
e

l
o
c
a
t
i
o
n

(
l
i
k
e

1
0
0
)

O
N
E

b
e
f
o
r
e

y
o
u

R
U
N

t
h
i
s

%
.
.
0

P
r
o
g
r
a
m
.

U
s
e

R
U
N

a
n
d

E
N
T
E
R
.

T
y
p
e

a
n
y

n
u
n
b
e
r
s

y
o
u

p
l
e
a
s
e

t
o

t
h
e

A
S
K
.

C
7
S

O
w
,

n
o
w

m
a
r
e
'
s

f
e
w

c
h
a
n
g
e
s

t
h
a
t

y
O
u

e
o
n

r
a
k
e

t
o

y
o
u
r

g
P
o
r
e
m

w
h
i
c
h

w
i
l
l

r
a
k
e

i
t

c
e
s
t
r
o
y

i
t
s
e
l
f

a
s

i
t

r
u
n
s

C
a

o
r
o
g
r
a

w
i
t
h

s
u
i
c
i
d
a
l

t
o
n
d
e
n
c
l
e
s
)
.

U
s
.

S
6
I
D
E
,

F
I
X

a
r
c

N
L
'
E

t
o

m
a
k
e

y
o
u
r
.
o
r
o
g
r
a
.

l
o
o
k

l
i
m
e
:

O
n

:
P
U
T

A

1
0

/

C
r
I
A
N
C
E
D

0
-
2

1
c

B
1

/
0
,
7
,
3

S
O
T
O

B

O
N
E

/

h
E
w

0
0
4

:
A
S
(

B

0
0
5

:
S
T
i

B

e
a

O
C
e
o

:
S
u
b

A

O
N
E

/

N
E
%

0
0
7

O
U
T

P

.
-
3

D
i
d

S
i
m
p
e
r

f
i
n
a
l
l
y

s
t
o
r
.

y
o
u
r

p
r
o
g
r
a
m

w
i
t
h

a
n

E
R
R
O
R

H
A
L
T
'
?

h
o

T
y
r
o
s

s
o
m
e

m
o
r
e

n
u
m
b
e
r
s

o
r

a
s
k

f
o
r

h
o
l
t
.

w
h
a
t

m
e
s
s
a
g
e

d
i
d

S
i
m
m
e
r

p
r
i
n
t

w
h
e
n

i
t

t
r
i
e
d

t
o

e
x
e
c
u
t
e

(
o
b
e
y
)

l
o
c
a
t
i
o
n

7
7

.
L
I
S
T

y
o
u
r

p
r
o
g
r
a
m
.

W
h
i
c
h

i
n
s
t
r
u
c
t
i
o
n

w
a
s

o
s
s
t
r
o
y
e
d

b
y

t
n

l
a
s
t

n
u
m
b
e
r

Y
o
u

t
y
p
e
d
?

.9
:A

-
W
h
a
t

h
a
p
p
e
n
e
d

w
a
s

t
h
a
t

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

s
u
d
d
e
n
l
y

f
o
u
n
d

t
h
e

l
a
s
t

n
u
m
b
e
r

y
o
u

t
y
p
e
d

i
n

a

l
o
c
a
t
i
o
n

i
t

w
a
s

t
o
l
d

b
y

t
h
e

P

r
e
g
i
s
t
e
r

t
o

e
x
e
c
u
t
e
.

I
t

d
i
d
n
'
t

k
n
o
w

h
o
w

t
o

o
b
e
y

t
h
a
t

n
u
m
b
e
r

a
s

a
n

i
n
s
t
r
u
c
t
i
o
n
.

F
l
e
a
s
.

F
I
X

l
o
c
a
t
i
o
n

7

s
o

t
h
a
t

i
t

i
s

P
U
T

P

.
n
3

a
g
a
i
n
.

N
o
w

l
i
s
t

y
o
u
r

p
r
o
g
r
a
m

w
i
t
h

E
N
T
E
R
,

s
o

y
o
u

c
a
n

s
e
.

t
h
e

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

i
n
s
t
r
u
c
t
i
o
n

i
n

e
a
c
h

l
o
c
a
t
i
o
n
.

N
o
w

R
U
N

t
h
e

p
r
o
g
r
a
m

a
g
a
i
n

w
i
t
h

E
N
T
E
R

a
n
d

i
n
s
t
e
a
d

o
f

t
y
p
i
n
g

j
u
s
t

a
n
y

o
l
d

n
u
m
b
e
r
s

t
o

t
h
e

A
S
K
,

t
y
p
o

t
h
e

f
o
l
l
o
w
i
n
g

s
o
c
t
u
o
n
c
e

V
E
R
Y

c
a
r
e
f
u
l
l
y
:

0 0 0 t
h
e

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

n
u

f
o
r

i
n

l
o
c
a
t
i
o
n

7

t
h
o

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

n
u
m
b
e
r

i
n

l
o
c
a
t
i
o
n

6

t
h
e

m
a
c
n
i
n
e

l
a
n
g
u
a
g
e

n
u
m
m
o
r

i
n

l
o
c
a
t
i
o
n

S

t
h
e

m
a
c
h
i
n
e

l
a
n
d
u
a
g
e

n
u
m
b
e
r

i
n

l
o
c
a
t
i
o
n

4

t
h
e

m
a
c
h
i
n
e

i
n
n
n
u
a
g
e

n
u
r
o
e
r

i
n

l
o
c
a
t
i
o
n

3

t
h
e

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

m
u
m
m
e
r

i
n

l
o
c
a
t
i
o
n

2

t
h
e

r
a
c
h
f
n

l
a
n
g
u
a
g
e

n
u
m
b
e
r

i
n

l
o
c
a
t
i
o
n

1

c
o
n
t
r
o
l

G

6
2
5

D
o

y
o
u

t
h
i
n
k

t
h
e

o
r
o
g
r
e
n
:

0
0
1

1
P
U
T

P

.

w
i
l
l

r
u
n

f
o
r
e
v
e
r
?

Y
E
S

N
O

T
r
y

i
t
.

R
U
N

i
t

w
i
t
h

E
N
T
E
R
.

M
e
r
e

i
s

P
r
o
g
r
a
m

i
n

w
h
i
c
h

W
a
n
l
y
*

o
d
o
r
'
s

i
s

h
a
n
d
y
.

u
h
e

S
C
R
A
T
C
H

a
n
d

t
h
e
n

t
y
p
o

i
t

i
n
t

0
0
1

:
P
U
T

A

0

0
0
2

1
S
T
3
R
E

A

W
O
R
D

0
0
3

*
C
A
S
K

A

0
0
1
1

I
L
C
R

A

W
O
R
D

0
0
5

:
R
O
T

A

L
2

0
0
6

O
U
T

P

.
4

/

M
A
K
E

A

Z
E
R
O

/

U
S
E

I
T

T
O

E
M
P
T
Y

O
U
T

W
O
R
D

'
/

G
E
T

A

C
H
A
R
A
C
T
E
R

F
R
O
M

H
U
M
A
N

/

C
O
M
B
I
N
E

I
T

W
I
T
H

h
H
A
T
I
S

I
N

n
0
R
0

/

M
A
K
E

R
O
O
M

F
O
R

A
V
O
T
M
E
R

C
H
A
R
A
C
T
E
R

/

G
O

B
A
C
K

F
O
R

M
O
R
E

P
l
e
a
s
e

R
e
m
e
m
b
e
r

t
o
'
N
A
M
E

s
o
m
e

l
o
c
a
t
i
o
n

b
e
y
o
n
d

0
0
6

t
o

b
e

N
O
R
D
.

%
h
e
n

y
o
u

R
I
,
N

t
h
i
s

P
r
o
g
r
a
m
,

i
t

w
i
l
l

r
e
a
d

i
n

a
n
y

5
-

f
e
t
t
e
r

w
o
r
d

y
o
u

t
y
p
e

l
e
t
t
e
r
-
b
y
.

l
e
t
t
e
r

a
n
d

c
a
r
e
f
u
l
l
y

O
u
t

a
l
l

f
i
v
e

l
i
t
t
e
r
s

i
n
t
o

o
n
.

n
a
r
y

l
o
c
a
t
i
o
n

c
a
l
l
e
d

W
O
R
D
,

R
e
m
e
m
b
e
r

t
a
l
l

c
h
a
r
a
c
t
e
r

C
O
C
l

t
a
b
l
e
,

i
n

P
a
r
t

6
.

E
a
c
h

t
y
p
e
w
r
i
t
e
r

c
h
a
r
a
c
t
e
r

i
s

t
r
a
n
s
l
a
t
d

i
n
t
o

a

2

-
d
i
g
i
t

n
u
m
b
e
r

b
y

C
A
S
K
.

S
i
n
c
e

m
e
m
o
r
y

l
o
c
a
t
i
o
n

c
a
n

h
o
l
d

a
s

m
a
n
y

a
s

t
e
n

d
i
g
i
t
s
,

y
o
u

c
a
n

s
a
u
c
e
r
s

c
o
d
e
s

f
o
r

u
p

t
o

f
i
v
e

c
h
a
r
a
c
t
e
r
s

i
n
t
o

a
n
y

m
e
m
o
r
y

l
o
c
a
t
i
o
n

(
o
r

r
e
g
i
s
t
e
r
)
.

R
U
N

t
h
e

p
r
o
g
r
a
m

w
i
t
h

E
N
T
E
R

a
n
d

c
a
r
e
f
u
l
l
y

o
b
s
e
r
v
e

t
h
e

a
c
t
i
v
i
t
y

i
n

r
e
g
i
s
t
e
r

A
.

T
y
p
e

a
n
y

5
-

l
a
t
t
e
r

w
o
r
d
,

o
n
e

l
e
t
t
e
r

a
t

t
i
m
e
.

N
o
t
i
c
e

%
o
w

t
h
e

R
O
T
A
T
E

i
n
s
t
r
u
c
t
i
o
n

m
a
k
e
s

r
o
o
m

f
o
r

e
a
c
h

n
e
w

c
h
a
r
a
c
t
e
r

a
n
d

h
o
w

L
C
R

c
o
m
b
i
n
e
s

e
a
c
h

c
h
a
r
a
c
t
e
r

w
i
t
h

t
h
o
s
e

y
o
u
'
v
e

t
y
p
e
d

b
e
f
o
r
e
.

A
f
t
e
r

y
o
u
'
v
e

t
y
p
e
d

a
l
l

f
i
v
e

l
e
t
t
e
r
s
,

s
t
o
p

t
h
e

p
r
o
g
r
a
m

w
i
t
h

c
o
n
t
r
o
l

G
.

b
o
a
t

B
n
l
e
t
t
e
r
E
l

w
o
r
d

d
i
d

y
o
u

t
y
p
e
?

w
h
e
t

i
s

t
h
e

v
a
l
u
e

i
n

l
o
c
a
t
i
o
n

w
O
R
C
?

P
l
e
a
s
*

u
s
e

t
h
e

t
a
b
l
e

i
n

P
a
r
t

6

t
o

t
r
a
n
s
l
a
t
e

t
h
a
t

v
a
l
u
e

i
n
t
o

f
i
v
e

l
e
t
t
e
r
s
.

A
r
e

a
l
l

t
h
e

l
e
t
t
e
r
s
.

i
n

W
O
R
D

t
h
e

e
l
m
s

a
s

t
h
e
s
i
s

t
h
a
t

y
o
u

t
y
p
e
d
?

4, T
h
e
y

s
h
o
u
l
d

1
:
0

D
o
n
'
t

w
o
r
r
y

a
b
o
u
t

t
h
e
i
r

p
r
e
e
n
.

Q O
e
.
.
4

B
e
f
o
r
e

Y
O
U

c
a
n

u
s
e

t
h
i
s

y
o
u

m
u
s
t

P
u
t

y
o
u
r

s
u
b
s
t
i
t
u
t
i
o
n

c
o
o
l

i
n
t
o

s
o
m
e

F
4

G
c
t

m
e
m
o
r
y

l
o
c
a
t
i
o
n
s
,

w
h
e
t
.
?

w
e
l
l
,

t
h
e

f
i
r
s
t

l
e
t
t
e
r

i
n

t
h
e

a
l
o
h
a
o
e
t

i
s

P
A
,
,

s
o

i
f

y
o
u

t
y
p
e
d

t
h
a
t

t
o

C
A
S
K

S
.

r
e
g
i
s
t
e
r

.
1
,
,

w
o
u
l
o

h
a
v
e

i
n

4c
t
-

6
9
5

6
8
5

M
e
r
e
'
s

a

P
r
o
b
e
s

t
h
a
t

u
s
e
s

f
n
d
f
r
e
c
t

a
o
o
r
e
s
s
i
n
o

t
o

P
e
k
e

a

N
o
r

L
I
S
T

y
o
u
r

p
r
a
g
r
a
.
,

b
i
t
,
.

E
A
T
E
R

/
m
a
i
n
.

Y
o
u

s
h
o
u
l
d

s
t
i
l
l

s
a
v
e

t
h
e

s
a
m
e

c
o
d
e

(
l
e
t
t
e
r

s
u
b
s
t
i
t
u
t
i
o
n
)

f
o
r

s
e
c
r
e
t

S
S
S
S
S

n
e
s
.

P
l
e
a
s
e

c
l
e
a
r

S
i
m
p
e
r
'
s

o
r
c
g
r
a
m

i
n

b
o
t
h

a
s
s
e
m
b
l
y

a
n
d

a
c
m
i
m
e

l
a
n
g
u
a
g
e
.

t
h
y
?

S
e
c
a
u
s
e

y
o
u

m
e
m
o
r
y

w
i
t
h

S
C
R
A
T
C
H

a
n
d

t
y
p
e

f
t

i
n

(
y
o
u

n
e
e
d
n
'
t

t
y
p
e

t
h
e

r
e
n
e
n
s
i
O
t

S
I
-
0
1
Y

t
y
0
e
0

a
l
l

i
t
s

m
a
t
m
f
m
e

l
a
m
c
u
a
n
e

i
n
s
t
r
u
c
t
i
o
n
s

(
n
u

-
b
e
n
s
)

i
n

C
A
S
K

S

/

A
S
K

W
U
P
A
N

F
O
R

A

L
E
T
T
E
R

T
O

C
O
D
E

c
a
c
k
r
a
r
c
s

o
n
o

i
t

h
a
s

s
t
o
r
e
d

t
m
e
m

i
n

J
u
s
t

t
h
e

P
l
a
t
t

l
o
c
a
t
i
o
n
s
.

L
C
A
D

A

0
1
1

/

U
S
E

I
T
S

V
A
L
U
E

T
O

F
I
N
D

I
T
S

C
O
D
E

L
E
T
T
E
R

C
r
4
I
T
E

A

/

P
R
I
N
T

T
H
E

C
C
D
E

L
E
T
T
E
R

P
U
T

P
*
1

/

0
0

I
T

A
L
L

A
G
A
I
N

p
i
:

S
t
n
o
e
p

s
t
o
p

y
o
u
r

p
r
o
d
r
a
n

w
i
t
h

a
n

e
r
r
o
r

b
e
f
o
r
e

y
o
u

t
y
p
e
s

c
o
n
t
r
o
l

G
?

V
D

i
t

t
h
e

n
u
m
e
r
i
c
a
l

c
o
d
e

f
o
r

t
h
a
t

l
e
t
t
e
r
,

w
h
i
c
h

i
s

.
1
,
:
r
.
%
1
.

L
o
o
k

a
t

t
h
e

t
a
b
l
e

o
n

t
h
e

s
e
c
o
n
d

P
a
g
e

o
f

P
a
r
t

6
,

N
o
w

t
h
e

L
O
A
D

i
n
s
t
r
u
c
t
i
o
n

w
i
l
l

u
s
e

."
P

t
h
e

v
a
l
u
e

i
n

t
h
e

N

r
e
g
i
s
t
e
r

a
s

a
n

0

i
n

w
h
e
t

l
o
c
a
t
i
o
n

r-
P
'
N
"

t
d

w
i
l
l

y
o
u
r

s
u
b
s
t
i
t
u
t
i
o
n

c
o
d
e

f
o
r

t
h
e

a
l
p
h
a
b
e
t

b
e
g
i
n
?

*
.
t
e
%
.
1

r
f
,

a

R

D
i
d

y
o
u

s
a
y

6
5
°
T

nve
)"

)
s"

"

C
r

A
s
k

f
o
r

h
e
l
p

i
f

y
o
u

j
u
s
t

d
o
n
'
t

u
n
d
e
r
s
t
a
n
d
,

0
1

O
K
.

F
I
X

l
o
c
a
t
i
o
n

6
5

o
n
w
a
r
d

(
t
y
p
e

F
I
X

6
5
/
)

a
n
d

u
s
i
n
g

t
h
e

t
a
b
l
e

i
n

P
a
r
t

6
,

t
y
p
e

i
n
t
o

a
c
h

l
o
c
a
t
i
o
n

t
h
e

n
u
m
e
r
i
c
a
l

c
o
g
s

o
f

t
h
e

c
h
a
r
a
c
t
e
r

y
o
u

w
i
s
h

t
o

s
u
b
s
t
i
t
u
t
e

f
o
r

e
a
c
h

l
e
t
t
e
r

i
n

t
h
e

a
l
p
h
a
b
e
t
,

A
f
t
e
r

Y
o
u

d
o

t
h
i
s

f
o
r

t
h
e

l
D

l
o
c
a
t
i
o
n

w
h
o
s
e

a
d
d
r
e
s
s

c
o
r
r
e
s
o
o
n
d
s

t
o

"
Z
"

(
0
9
0
)
.

s
t
o
p
.

N
o
w

y
o
u

c
a
n

R
U
N

Y
O
u
r

p
r
o
g
r
a
m

w
i
t
h

R
E
T
U
R
N

o
r

E
N
T
E
R

a
r
i
a

t
y
p
e

i
n

l
e
t
t
e
r
s

t
o

s
e
e

w
h
a
t

n
o
w

N
O 4
'

T
h
i
n
k

a
b
o
u
t

t
h
e

p
r
o
g
r
a
m

a
n
d

t
h
e

t
a
b
l
e

i
n

P
a
r
t

6
,

l
e
t
t
e
r
s

y
o
u
r

c
o
d
e

s
u
b
s
t
i
t
u
t
e
s

f
o
r

t
h
e
m
,

A
f
t
e
r

y
o
u
'
v
e

t
y
p
e
d

s
o
m
e

l
e
t
t
e
r
s
.

t
y
p
e

s
o
m
e

o
t
h
e
r

c
h
a
r
a
c
t
e
r
s

l
i
k
e

'
9
'

o
r

'
X
'
,

D
i
d

y
o
u
r

p
r
o
g
r
a
m

p
r
i
n
t

o
u
t

s
u
b
s
t
i
t
u
t
i
o
n

c
h
a
r
a
c
t
e
r

f
o
r

a
n
y

o
f

t
h
e

n
o
n
-

l
e
t
t
e
r
s

Y
O
U

t
a
d
e
d
?

Y
E
S

A
sk

f
o
r

W
e
.

Y
E
S

A
r
e

y
o
u

s
u
r
e

Y
o
u

t
y
p
e
o

t
n
e

s
e
e
:
m
i
n
c
e

e
x
a
c
t
l
y
?

Y
E
S

N
O

4
'

4
, V

A
s
k

f
o
r

h
e
l
p
.

F
I
X

t
h
e

p
r
o
g
r
a
m

b
a
c
k

u
p

a
n
d

t
r
y

i
t

a
g
a
i
n
,

T
h
i
s

s
h
o
u
l
d

p
r
o
v
e

t
o

y
o
u

t
h
a
t

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

o
n
l
y

u
n
d
e
r
s
t
a
n
d
s

c
e
r
t
a
i
n

n
u
r
b
e
r
s

a
s

i
n
s
t
r
u
c
t
i
o
n
s
,

T
o

r
e
a
l
l
y

p
r
o
v
e

I
t
,

R
U
N

t
h
e

O
r
0
G
r
a
f
t
.
o
e
.

a
g
a
i
n

a
n
o

r
a
k
e

a

s
l
i
g
h
t

c
h
a
n
g
e

i
n

o
n
e

o
f

t
h
e

n
o
n
-
z
e
r
o

n
u
m
b
e
r
s

i
n

t
h
e

s
e
q
u
e
n
c
e

y
o
u

t
y
p
e
d
,

y
o
u

g
e
t

S
i
m
p
e
r

t
o

c
o
m
p
l
a
i
n

'
E
R
R
O
R

H
A
L
T
'

a
g
a
i
n
?

N
O

T
r
y

i
t

a
g
a
i
n

o
r

a
s
k

f
o
r

h
e
l
p
.

G
o
o
d
,

P
l
e
a
s
e

L
I
S
T

w
i
t
h

E
N
T
E
R

a
g
a
i
n
.

Y
o
u
'
v
e

p
r
o
v
e
d

f
e
w

t
h
i
r
c
i
s
i

a
,

T
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

u
n
d
e
r
s
t
a
n
d
s

o
n
l
y

c
e
r
t
a
i
n

n
u
m
b
e
r
s

a
s

i
n
s
t
r
u
c
t
i
o
n
s
,

b
.

T
h
e

S
i
n
c
i
e
r

i
n
t
e
r
p
r
e
t
e
r

o
b
e
y
s

L
I
S
T

c
o
m
m
a
n
d
s

b
y

t
r
a
n
s
l
s
t
i
r
g

m
a
c
h
i
n
e

l
a
n
g
u
a
g
e

i
n
s
t
r
u
c
t
i
o
n
s

(
n
u
m
b
e
r
s
)

b
a
c
k

i
n
t
o

a
b
l
y

l
a
n
g
u
a
g
e
.

c
.

I
n
d
i
r
e
c
t

a
d
d
r
e
s
s
i
n
g

i
s

f
u
n

a
n
d

h
e
l
p
f
u
l
,

b
u
t

w
a
t
c
h

f
o
r

b
a
g
s
.

73
5

.
h
a
t
'
s

h
e
r

a
c
n
r
c
s
s
?

f
t
h
a
t
'
s

G
e
r
a
r
o
'
s

a
c
n
-
e
s
s
7

.
h
a
t
'
s

y
o
w
r

a
c
d
h
e
s
s
7

R
u
h

t
h
e

o
r
o
g
r
a
m

w
i
t
h

E
h
I
E
4

a
n
c

a
t
t
a
i
n

.
4
t
h

F
i
T
u
R
N
.

w
h
a
t

h
a
s

L
i
l
a
c
'
s

h
e
s
s
a
c
e
?

H
a
s

i
t

w
h
a
t

y
o
u

e
x
p
e
c
t
e
d
?

c
Y
E
S

0 c
t

V

N
o

T
h
i
n
k

a
b
o
u
t

w
h
a
t

e
a
c
h

(
r
s
t
r
u
c
t
i
o
n

i
n

t
h
e

c
r
o
c
r
a
n

d
o
e
s

a
n
d

R
U
N

i
t

a
g
a
i
n
.

F
A

Y
o
u

i
t
s

n
o
w

l
i
c
e
n
s
e
d

i
n
d
i
r
e
c
t

a
d
d
r
e
s
s
e
r
.

,
s
0 4 4r

72
5

Y
o
u

h
a
v
e

b
e
e
.

u
s
i
h
g

a
n
d

(
l
i
t
e
r
a
l
,

s
v
b
o
l
i
c
,

r
e
l
a
t
i
v
e

o
r

i
n
o
i
r
e
c
t
)

a
s

r
a
v
e
s

1
0
1
4
.
7
%

h
a
v
e

v
a
l
u
e
s
.

O
f
t
e
n
.

t
h
e
s
e

v
e
N
e
s

r
a
v
e

D
e
a
n

n
u
m
b
e
r
s

c
o
r
t
A
i
m
a
d

i
n

r
e
h
o
r
y

l
o
c
a
t
i
o
n
s
,

a
n
d

y
o
u
'
v
e

b
e
e
n

a
b
l
e

t
o

s
e
e

t
h
e
m

w
i
t
h

F
I
X
,

D
L
H
P

o
r

L
I
S
T
,

o
r

u
s
e

t
h
e
n

i
n

a

o
r
o
a
r
a
m

w
i
t
h

L
O
A
D
,

A
D
D
,

M
U
L
T
I
P
L
Y
.

L
O
R

e
t
c
.

I
n

t
h
e

c
a
s
e

o
f

i
n
c
i
r
e
c
t

a
d
d
r
e
s
s
e
s
,

y
o
u
'
v
e

u
s
e
d

t
h
e

n
a
m
e

o
f

a

r
e
g
i
s
t
e
r

(
A
,

B

o
r

P
)

a
s

f
o
r

f
i
n
d
i
n
g

v
a
l
u
e

w
h
i
c
h

y
o
u
r

o
r
o
g
r
a
m

c
a
n

u
s
e

a
s

a
n

a
d
o
r
e
s
:
.

T
h
e

i
n
t
e
r
e
s
t
i
n
g

t
h
i
n
g

b
o
u
t

i
n
c
i
r
e
c
t

a
d
o
r
e
s
s
i
r
g

i
s

t
h
a
t

i
t

c
a
n

b
e

e
x
t
e
n
d
e
d

w
i
t
h
o
u
t

l
i
m
i
t
.

S
o

n
a
m
e
s

(
l
o
c
a
t
i
o
n

a
d
d
r
e
s
s
e
s
)

c
a
n

h
a
v
e

v
4
e
S

(
n
u
m
b
e
r
s

i
n

t
h
e
m
)

w
h
i
c
h

c
a
n

t
h
e
m
s
e
l
v
e
s

b
e

u
s
e
d

a
s

a
d
d

(
n
a
m
e
s
)

o
f

l
o
c
a
t
i
o
n
s

w
h
i
c
h

f
n

t
u
r
n

h
a
v
e

v
a
l
u
e
s

w
h
i
c
h

c
a
n

b
e

u
s
e
d

a
s

a
c
d
r
e
s
s
e
s

h
a
v
e

v
a
l
u
e
s

w
h
f
c
h

a
n
d

o
n

a
n
o

o
n

a
n
d

o
n

T
h
i
s

i
s

a
s

i
f

y
o
L

r
a
n
t
e
d

t
o

v
i
s
i
t

y
o
u
r

f
r
i
e
n
d

L
i
l
a
c

w
h
o
s
e

h
o
r
e

a
c
c
r
e
s
s

y
o
u

c
o
n
'
t

k
n
o
w
,

b
a
t

1
,
0
t
i

d
o

k
n
o
w

t
h
a
t

y
o
u
r

f
r
i
e
n
d

G
e
r
a
h
o

k
n
o
w
s

h
e
r

a
d
d
r
e
s
s
,

b
u
t

y
o
u
'
v
e

f
o
r
g
o
t
t
e
n

h
i
s

a
d
d
r
e
s
s
,

s
o

y
o
u

g
o

o
v
e
r

t
o

P
a
u
l
a
'
s

h
o
u
s
e

t
o

a
s
k

h
e
r

e
e
e
e

h
e

l
i
v
e
s

(
g
a
s
p
)
.

W
e
r
e
'
s

p
r
o
g
r
a
m
.

U
s
e

S
C
R
A
T
C
h

a
n
d

t
h
e
n

t
y
p
e

f
t

i
n

R
e
s
e
m
b
e
r

t
o

n
a
m
e

l
o
c
a
t
i
o
n

5
7

P
A
U
L
A

a
n
d

F
I
X

t
h
e

v
a
l
u
e
s

o
f

l
o
c
a
t
i
o
n
s

2
3
.

5
7

a
n
d

1
0
3

t
o

b
e

a
s

s
h
o
w
n
:

0
0
1

:
P
U
T

9

P
A
U
L
A

0
0
2

:
L
O
A
D

o

t
9

0
0
3

:
L
O
A
D

a

0
0
4

:
L
O
A
D

9

B

0
0
5

:
C
o
R
/
T
E

B

0
0
6

:
S
h
I
F
T

B

R
2

0
0
7

S
C
H
R
I
T
E

0
0
8

:
H
A
L
T

0
2
0

:
1
0
3

0
5
7

3
2
0

(
P
A
U
L
A
)

1
0
3

:
7
3
7
2

/

G
E
T

P
A
U
L
A
'
S

A
C
T
R
E
S
S

/

G
O

G
E
T

G
E
R
A
R
D
'
S

A
D
D
R
E
S
S

(
0
A
U
L
A
I
S

V
A
L
U
E
)

/

G
E
T

L
I
L
A
C
'
S

A
O
D
P
E
S
S

;
G
E
R
A
R
D
'
S

V
A
L
L
E
)

/

G
E
T

h
E
R

V
A
L
U
E

(
M
E
R

M
E
S
S
A
G
E

T
C

Y
:
U
)

/

P
R
I
N
T

/

I
T

/

O
U
T

'
B
e
f
o
r
e

y
o
u

R
U
N

t
h
i
s

P
r
o
g
r
a
m
,

w
h
a
t

c
o

y
o
u

t
h
i
n
k

L
i
l
c
l
s

m
e
s
s
a
g
e

i
s
?

i'3

Y
o
u

m
a
y

n
a
v
e

r
o
t
i
c
e
d

t
e
a
t

t
h
e

a
r
c
c
e
o
u
r
e
s

v
o
u

u
s
e
d

i
n

y
o
u
r

c
o
c
e

c

-
o
g
r
e
-

o
o
n
'
t

s
e
e
n

t
o

w
a
n
t

a
n
y

r
e
t
u
r
n

c
a
r
e
s
s
.

T
h
a
t
'
s

b
e
c
a
u
s
e

t
h
c
v

-
e
v
e
r

e
x
u
e
c
t

t
o

r
e
t
u
r
n

t
o

t
h
e

P
l
a
t
s

f
r
o
,

w
h
i
t
.
.

t
h
e
y

w
e
r
e

c
a
l
l
a
:
.

T
h
e
y

w
e
r
e

d
e
s
i
a
h
c
c

r
u
n

f
o
r
o
v
e
r

o
r

u
n
t
i
l

y
o
u

s
t
e
p

t
e
e
m

w
i
t
h

c
o
n
t
r
a
'

.
7
.
4

F
u
r
:
h
e
r
o
r
e
.

n
e
i
t
h
e
r

C
A
S

B

n
o
r

P
6
7

A

S
T
A
R
T

e
x
p
e
c
t

i
n
D
6
t
A

w
h
e
n

L
O
A

A

5

C
W
R

A

?
U
T

P

1

C
-
R

A

L
O
A

o

P
A

C
.
,
4

A

P
U
T

ó

3
2

C
h
R

c

P
J
T

P

.
6

t
h
e
y

a
r
e

c
a
n
o
e
.
,

h
o
w
e
v
e
r
,

t
h
e

s
u
o
p
r
o
c
c
o
u
r
e

e
x
p
e
c
t
s

a
n

i
n
p
u
t

i
n

t
'
.

A

r
e
g
i
s
t
e
r

w
e
l
c
h

i
t

w
i
l
l

u
s
e

a
s

a

c
h
a
r
a
c
t
e
r

c
o
o
.

a
n
d

a
n

a
d
d
r
e
s
s
,

T
h
e
s
e

a
r
e

d
e
g
e
n
e
r
a
t
e

p
r
o
c
e
o
u
r
e
s

b
e
c
a
u
s
e

t
h
e
y

n
e
v
e
r

u
s
e

a

r
e
t
u
r
n

a
d
o
r
e
s
,
.

h
h

e
e
e
e
e
e

Y
O
U

w
r
i
t
e

a

p
r
o
c
e
o
u
r
e
,

y
o
u

t
o

e
e

e
e

i
n
e

t
n
e

c
a
l
l
i
n
g

s
e
c
s
:
l
e
n
t
o

w
h
s
c
n

t
e
l
l
s

t
h
a
t

p
r
o
c
e
d
u
r
e

i
t
s

r
e
t
u
r
n

a
o
d
r
e
s
s

a
n
d

i
n
p
u
t
s
.

E
a
c
h

P
r
o
c
e
d
u
r
e

c
a
n

h
a
v
e

d
i
f
f
e
r
e
n
t

c
a
l
l
i
n
g

s
e
q
u
e
n
c
e
.

+
t
h
e
r
e
f
o
r

y
o
u

c
a
l
l

a

P
r
o
c
e
d
u
r
e
,

y
o
u

m
u
s
t

w
r
i
t
e

i
n
s
t
r
u
c
t
i
o
n
s

w
h
i
c
h

D
F
O
O
U
C
e

t
h
e

c
a
l
l
i
n
g

s
e
o
u
e
n
c
e

t
h
a
t

p
a
r
t
i
c
u
l
a
r

D
r
o
c
e
a
u
r
e

e
x
p
e
c
t
s
.

T
h
e
n

y
o
u

^
t
r
a
n
s
f
e
r

c
o
n
t
r
o
l
"

t
o

t
h
e

p
r
o
c
e
o
u
r
e
.

w
h
i
c
h

J
u
s
t

*
e
a
n
s

t
h
a
t

Y
o
g
i

t
r
a
n
s
f
e
r

t
h
e

c
a
n
p
u
t
e
r
'
s

a
t
t
e
n
t
i
o
n

t
o

t
h
e

i
n
s
t
r
u
c
t
i
o
n
s

i
n

t
h
a
t

p
r
o
a
c
c
u
-
e
.

Y
o
u

a
l
r
e
a
d
y

k
n
o
w

n
o
w

t
o

o
o

t
h
i
s
i

s
i
m
p
l
y

P
L
T

:
h
e

a
c
c
r
a
s
s

o
f

t
h
e

p
r
o
c
e
d
u
r
e
'
s

f
i
r
s
t

i
n
s
t
r
u
c
t
i
o
n

i
n
t
o

t
h
e

P

r
e
g
i
s
t
e
r

a
n
d

t
h
e

S
i
r
o
r

c
o

-
c
u
t
e
r

w
i
l
l

i
n
n
e
d
i
a
t
a
l
Y

b
e
g
i
n

e
x
e
c
u
t
i
n
g

i
t
s

i
n
s
t
r
u
c
t
i
o
n
s
.

L
e
t
'
s

w
r
i
t
e

a

p
r
o
c
e
d
u
r
e

w
i
t
h

a

c
a
l
l
i
n
g

s
e
o
u
e
n
c
e

w
h
i
c
h

e
x
p
e
c
t
s

a

r
e
t
u
r
n

a
d
d
r
e
s
s

a
n
d

t
w
o

i
n
p
u
t
s
.

a
n
d

r
e
t
u
r
n
s

i
t
s

r
e
s
u
l
t

(
o
u
t
p
u
t
)

i
n

t
h
e

A

r
e
g
i
s
t
e
r
.

T
h
e

P
r
o
c
e
d
u
r
e

m
o
u
l
d

S
n
I
F
T

t
h
e

s
e
c
o
n
d

i
n
p
u
t

l
e
f
t

t
w
o

d
i
g
i
t
s

a
n
y
.

t
h
e
n

L
t
I
R

t
n
e

r
i
g
h
t

t
w
o

d
i
g
i
t
:

o
f

t
h
e

f
i
r
s
t

i
n
p
u
t

i
n
t
o

t
h
a
t
.

m
a
k
i
n
g

i
t
s

o
.
t
c
u
t

v
a
l
u
e
.

Y
o
u

w
i
l
l

h
a
v
e

u
s
e

f
o
r

t
h
i
s

P
r
o
c
e
d
u
r
e

a
s

p
a
r
t

o
f

a

p
o
s
t
e
r
-
-
-
i
t
i
n
g

p
r
o
g
r
a
m
.

7
T
S

L
e
t
'
s

s
e
e

i
f

v
e
u

u
n
d
e
r
s
t
a
n
d

1
.
0
1
.

t
h
e

P
u
s

r
o

w
a
l
l
e
t

P
r
o
c
e
o
u
r
e
s

w
e
r
e

u
s
e
o

1
1
0
.
0
r
.

y
o
u

o
b
e
y
e
d

y
o
u
r

l
i
s
t

o
f

t
h
i
r
s
t
'
s

t
o

o
o
.

w
h
e
n

y
o
u

a
i
d

l
i
r
a

1

o
f

y
o
u
r

l
i
s
t
.

y
o
u

c
a
l
i
c
o

t
h
e

b
u
s

p
r
o
c
e
o
u
r
o
.

g
a
v
e

i
t

t
h
e

i
n
p
u
t

(
.
l
e
i
t
i
n
e
t
i
O
n
)

e

c
o
l
a

i
t

t
o

r
e
t
u
r
n

w
h
e
n

i
t

w
a
s

o
o
n
o

s
o

y
o
u

c
c
u
l
a

"
T
.

f
i
n
i
s
h

l
i
n
e

A
t

i
t
s

l
i
n
e

4
,

t
'
.

b
u
s

p
r
o
c
e
d
u
r
e

c
a
l
l
e
a

t
h
e

\
N
A

-

P
r
o
c
e
s
u
r
e
*

g
a
v
e

i
t

a
n

i
n
p
u
t

w
h
i
c
h

w
a
s

t
h
e

p
r
i
c
e

o
f

t
r
e

t
i
a
x
e
t

LI
a
n
d

t
o
l
d

i
t

t
o

r
e
t
u
r
n

t
o

f
i
n
i
s
h

l
i
r
a

.
.
.
I
.
.

o
f

t
h
e

p
r
o
c
e
d
u
r
e
.

W
h
e
n

t
h
e

b
u
s

c
r
o
c
e
a
u
r
e

f
i
n
i
s
h
e
o
,

y
o
u

w
e
r
e

a
t

'
.
1

e
a
r
l
y

t
o

b
u
y

r
i
.

'

S
o

y
o
u

c
a
l
l
e
d

t
h
e

.
.

i
t
;
.
.
.
*
.
l
p
r
o
c
e
o
u
r
e

i
n

o
r
o
e
r

t
o

p
a
y

f
o
r

t
h
e
m
.

W
i
t
h

t
h
a
t

d
o
n
e
,

y
o
u

c
a
l
l
e
d

t
h
e

P
r
o
c
e
o
u
r
e

a
g
a
i
n

s
o

y
o
u

c
o
O
d

G
o

t
o

o.
-

A
n
d

s
o

o
n
,

u
n
t
i
l

y
o
u

r
e
a
c
n
s
c

Y
o
u

m
a
y

n
a
v
e

n
o
t
i
c
e
d

o
n
e

g
o
o
d

r
e
a
s
o
n

f
o
r

u
s
i
n
g

p
r
o
c
e
d
u
r
e
s
.

T
h
e
y

s
a
v
e

t
i
m
e

a
n
d

,
:
a
c
e

i
f

t
h
o
y

a
r
e

u
s
e
a

v
e
r
y

o
f
t
e
n

b
e
c
a
u
s
e

y
o
u

c
n
l
Y

n
e
e
d

t
o

w
r
i
t
e

t
h
e
m

o
n
c
e

i
n

y
o
u
r

p
r
o
s
y
*
.

W
h
e
n
e
v
e
r

y
o
u

c
a
l
l

t
h
e
m

y
o
u

t
o
l
l

t
e
e
n

e
e
e
e
e

t
o

c
o
r
e

b
a
c
k
.

I
t
'
s

a
s

i
f

t
h
e

w
r
o
t
e

P
r
o
c
e
o
u
r
o

w
e
r
e

a
u
t
o
m
a
t
i
c
a
l
l
y

i
n
s
e
r
t
e
d

a
t

e
a
c
h

p
l
a
c
e

y
o
u

u
s
e
'
s

(
c
a
l
l
e
d
)

i
t
:

4
u
1
'

A

r
o
c
c
.

t
o

u
s
e

w
a
l
l
e
t

1
.

g
r
a
b

i
t

i
n

h
a
n
d

2
.

o
r
e
n

i
t

3
.

t
a
k
e

o
u
t

e
n
o
u
g
h

r
o
n
e
y

4
.

o
u
t

b
a
c
k

c
h
a
n
t
.
:

t
o

u
s
e

a

b
u
s

1
.

f
i
n
d

a

b
u
s

s
t
o
p

2
.

w
a
i
t

f
o
r

b
u
s

3
.

g
e
t

o
n

i
t

r
e
i
r
y
p
a

t
i
c
k
e
t

S
.

g
e
t

o
f
f

a
t

s
t
o
p

d
o

t
o
d
a
y

1
.

C
D

t
o

P
P
.
:
Y
i
n

-
-
4
Z
e
e
t
o

V
e
n
t
.
r
a

K
a
t
i

.

:
u
y

c
o
c
a

a
n
c

c
:

-
:
y

5
.

g
o

t
o

o
e
'
.
t
i
A
t

6
.

g
o

h
o
-
.

t
o

w
o
e

w
a
l
l
e
t

1
.

g
r
a
o

i
t

i
n

h
a
n
d

2
.

o
p
e
n

i
t

3
.

t
a
k
e

o
u
t

e
n
o
u
g
h

m
o
n
e
y

4
.

p
u
t

b
e
c
k

c
h
a
n
g
e

t
o

u
s
e

a

t
u
s

I
.

f
i
n
d

a

t
.
l
s

s
t
a
.
:

2
.

w
a
i
t

f
o
r

b
u
s

3
.

g
e
t

o
n

i
t

4
.

a

t
i
c
k
e
t

S
.

g
e
t

o
f
f

a
t

:
t
:
:

e
o
s

S
T
O

A

S
F
I
F
T
V
*
P

/

T
E
L
L

S
H
I
F
T
Y

r
s
P
u
T

s
i

S
T
O

0

S
H
I
F
T
Y
+
)

/

T
E
L
L

S
H
I
F
T
Y

I
N
R
J
T

*
2

P
U
T

A

.
.
3

/

H
A
R
E

T
h
E

P
L
T
o
m

A
f
t
C
R
E
S
S

S
T
O

A

S
H
I
F
T
Y
I

/

T
E
L
L

S
H
I
F
T
Y

A
e
c
.
.
1

I
T

P
U
T

S
H
I
F
T
Y

/

T
R
A
N
S
F
E
R

C
O
N
T
R
O
L

T
O

S
H
I
F
T
Y

h
h

0
0
0
0
0
0

y
o
u

w
a
n
t

t
o

c
e
l
l

(
s
n
o
o
p

t
h
e

s
e
r
v
i
c
e
s

o
f
)

S
H
I
F
T
Y

I
n

y
o
u
r

C
1

p
r
o
g
r
o
,

y
o
u

o
u
s
t

u
s
e

f
i
v
e

i
n
s
t
r
u
c
t
i
o
n
s

l
i
k
e

t
h
o
s
e

a
b
o
v
e
.

N
o
w

l
e
t
'
s

0 f
i

w
r
i
t
e

a

p
r
o
g
r
a
"

t
h
a
t

w
i
l
l

g
o
t

t
w
o

i
n
p
u
t
s

f
r
o
m

y
o
u

a
n
d

t
h
e
n

c
a
l
l

S
H
I
F
T
Y
.

1
-
4

T
y
p
e

F
I
X

1
/

a
n
d

t
h
e
s
e

t
w
o

i
n
s
t
r
u
c
t
i
o
n
s
1

c
f
-

0
0
1

t
A
S
K

A

/

G
E
T

I
N
P
U
T

S
I

F
R
O
M

H
U
M
A
N

H
0
0
2

T
A
S
K

8

/

G
E
T

I
N
P
U
T

S
2

F
R
O
M

H
U
M
A
N

V
D

N
o
w

t
y
p
e

I
n

t
h
e

f
i
v
e

i
n
s
t
r
u
c
t
i
o
n
s

a
b
o
v
e

w
h
i
c
h

p
r
o
d
u
c
e

t
h
e

c
a
l
l
i
n
g

F
o
r

t
h
i
s

p
r
o
c
e
d
u
r
e
,

l
e
t
'
s

a
g
r
e
e

t
h
a
t

t
h
e

f
i
r
s
t

l
o
c
a
t
i
o
n

a
f
t
e
r

i
t
s

f
i
r
s
t

s
e
q
u
e
n
c
e
.

T
i
m

t
y
p
o

a

H
A
L
T
.

L
I
S
T

y
o
u
r

P
r
o
g
r
a
m

s
o

y
o
u

c
a
n

s
e
e

e
v
e
r
y
.

I
n
s
t
r
u
c
t
i
o
n

w
i
l
l

c
o
n
t
a
i
n

t
h
e

r
e
t
u
r
n

a
d
d
r
e
s
s
.

t
h
e

s
e
c
o
n
d

w
i
l
l

h
a
v
e

t
h
e

b
d

t
h
i
n
g
.

M
o
w

R
U
N

y
o
u
r

P
r
o
g
r
a
m

w
i
t
h

E
N
T
L
R
.

T
y
p
e

a
n
y

2
d
i
g
i
t

n
u
m
b
e
r

f
o
r

f
i
r
s
t

i
n
p
u
t
,

a
n
d

t
h
e

t
h
i
r
d

w
i
l
l

h
a
v
e

t
h
e

s
e
c
o
n
d
'
i
n
a
u
t
.

n
o
w

t
y
p
e

t
h
e

t
h
e

f
i
r
s
t

"
I
N
P
U
T

N
U
M
B
E
R
:
"

a
n
d

a
n
y

n
u
m
b
e
r

b
u
t

z
e
r
o

f
o
r

t
h
e

s
e
c
o
n
d
.

E
J

c
a

P
U
T

P

.
+
4

i
n
s
t
r
u
c
t
i
o
n

a
n
d

t
h
e

t
h
r
e
e

c
a
r
e
s

i
n
t
o

S
H
/
F
T
Y
'

f
i
r
s
t

!
c
u
r

F
a

O
b
s
e
r
v
e

w
h
a
t

h
a
p
p
e
n
s

w
h
e
n

S
H
I
F
T
Y

i
s

c
e
l
l
e
d
,

e
s
p
e
c
i
a
l
l
y

t
h
e

P

r
e
g
i
t
e
r
'
s

l
o
c
a
t
i
o
n
s
.

I
n

t
h
e

n
e
x
t

f
e
w

l
o
c
a
t
i
o
n
s
,

w
r
i
t
e

t
h
e
s
e

i
n
s
t
r
u
c
t
i
o
n
s

w
h
i
c
h

V
a
l
u
e
.

W
h
e
n

y
o
u
r

p
r
o
g
r
a
m

s
t
o
p
s
,

L
I
S
T

i
t

&
g
a
i
n
.

W
h
a
t

v
a
l
u
e

i
s

,
S
i

.

0
-
1

a
c
t
u
a
l
l
y

d
o

t
h
e

w
o
r
k

o
f

t
h
e

p
o
c
o
d
u
r
a
l

9
3

l
o
c
a
t
i
o
n

S
H
I
F
T
Y
+
1

7

i
n

S
H
/
F
T
Y
+
2

7

:
0
4
4
,
4
,
,

i
n

S
H
I
F
T
Y
+
3

7
9
5

F
l
e
a
s
,

u
s
e

S
C
R
A
T
C
H

t
o

r
a
s
e

'
e
w
e
r
s
,
.

N
A
P
E

s
o
m
e

l
o
c
a
t
i
o
n

l
i
k
e

S
O

o

1
0
0

t
o

b
e

S
H
I
F
T
Y
.

T
h
a
t

w
i
l
l

b
e

t
h
e

p
r
o
c
e
d
u
r
e
'
s

n
o
w
.
.

N
o
w

F
I
X

S
H
I
F
T
Y
/

a
n
d

w
e
'
l
l

d
e
f
i
n
e

t
h
e

c
a
l
l
i
n
g

s
e
o
u
t
t
n
c
e

f
o
r

t
h
i
s

p
r
o
c
e
d
u
r
e
.

I
t

w
i
l
l

e
s
n
e
c
t

t
w
o

i
n
p
u
t
s

a
n
d

r
e
t
u
r
n

a
d
d
r
e
s
s
,

s
o

w
e

n
e
e
d

t
h
r
e
e

o
p
e
n

l
o
c
a
t
i
o
n
s

i
n

t
w
s

p
r
o
c
e
d
u
r
e

f
o
r

s
t
o
r
i
n
g

t
h
e
s
e

p
i
e
c
e
s

o
f

i
n
f
o
r
m
a
t
i
o
n

(
t
h
e

c
a
l
l
i
n
g

p
a
r
a
o
e
t
e
r
s
1
)

T
h
e
y

w
o
n
'
t

b
e

i
n
s
t
r
u
c
t
i
o
n
s
.

h
h
y

s
h
o
u
l
d

t
h
e

o
r
o
c
o
d
u
r
e

r
a
k
e

S
i
n
g
e
r

s
k
i
p

o
v
e
r

t
h
e
m
?

P
U
T

P

.
0
1

(
S
H
I
F
T
Y
)

/

S
K
I
P

O
V
E
R

C
A
L
L
I
N
G

P
A
R
A
M
E
T
E
R
S

O
/

P
L
A
C
E

F
C
R

R
E
T
U
R
N

A
D
D
R
E
S
S

.
0

/

P
L
A
C
E

F
O
R

I
N
P
U
T

I
t

O
/

P
L
A
C
E

F
O
R

I
N
P
U
T

S
2

z
A
r
e

t
n
.
,
*

v
a
l
u
e
s

t
h
e

c
o
r
r
e
c
t

r
e
t
u
r
n

a
d
d
r
e
s
s

a
n
d

i
n
p
u
t
s
?

Y
E
S

0
0
1

:
A
S
K

A

(
0

0
0
2

:
A
S
K

c
'
4

0
0
3

N
O

A
s
k

f
o
r

h
a
l
e
.

-
.
4
4
0
.

0
0
4

P
U
T

.
0
1

(
S
H
I
F
T
Y
)

_
:
A
t
t
.
m
y
r
.
r
.
e

0
0
5

:
P
U
T

A

.
.
3

0
0
6

0
0
7

:
P
U
T

P

S
H
I
F
T
Y

0
0
8

t
H
A
I
.

4
%
i
-

L
O
A

A

8
H
I
F
T
Y
+
3

S
H
I

A

L
2

L
O
R

A

S
H
I
F
T
Y
.
2

L
O
A

P

S
H
/
F
T
y
s
1

L
O
A

A

S
H
I
F
T
M
3

S
H
I

A

L
2

L
O
R

A

S
P
I
F
T
Y
+
2

L
O
A

P

S
N
I
F
T
Y
+
1

/

G
E
T

I
N
P
U
T

1
,
2

/

S
H
I
F
T

I
T

L
E
F
T

2

O
I
G
I
T
S

/

C
O
M
B
I
N
E

I
T

h
I
T
H

I
N
P
U
T

A
t

/

R
E
T
U
R
N

W
I
T
H

R
E
S
U
L
T

I
N

A

h
o
w

t
h
a
t

y
o
u
'
v
e

d
e
f
i
n
e
d

y
o
u
r

f
i
r
s
t

g
e
n
u
i
n
e

p
r
o
c
e
d
u
r
e
,

h
o
w

d
o

y
o
u

u
s
e

(
c
a
l
l
)

i
t
?

W
e
l
l
,

y
o
u

k
n
o
w

i
t

e
x
p
e
c
t
s

t
h
a
t

t
h
r
e
e

t
h
i
n
g
s

(
c
a
l
l
f
"
g

p
a
r
a
m
e
t
e
r
s
)

b
e

s
t
o
r
e
d

i
n

i
t

b
e
f
o
r
e

i
t

c
a
n

d
o

i
t
s

w
o
r
k
.

S
e
t

w
Y
o
u

c
e
l
l

i
t

i
n

y
o
u
r

p
r
o
p
r
o
o
t

y
o
u

o
u
s
t

a
t

l
e
a
s
t

h
a
v
e

t
h
r
e
e

S
T
C
R
E

I
n
s
t
r
u
c
t
i
o
n
s

w
h
i
c
h

g
i
v
e

i
t

t
h
e

i
n
p
u
t
s

a
n
d

t
h
e

r
e
t
u
r
n

a
d
d

r
r
r
r
r

Y
o
u

w
i
l
l

n
e
e
d

t
w
o

p
o
r
e

i
n
s
t
r
u
c
t
i
o
n
s
.

o
n
e

w
h
A
c
h

m
a
k
e
s

t
h
e

r
e
t
u
r
n

a
d
d
r
e
s
s

a
n
d

o
n
e

w
h
i
c
h

t
r
a
n
s
f
e
r
s

c
o
n
t
r
o
l

t
o

S
H
I
F
T
Y
.

H
e
r
e
'
s

a

t
y
p
i
c
a
l

w
a
y

t
o

C
e
l
l

S
H
I
F
T
Y
,

a
s
s
u
m
i
n
g

r
e
g
i
s
t
e
r

A

h
a
s

i
n
p
u
t

S
I

i
n

i
t

e
n
d

S

h
a
s

I
n
p
u
t

8
2
1

6
5
5

I
n

C
n
I
O

p
r
e
g
n
a
n
t

t
h
e

d
f
i
s
i
o
n

t
o

s
t
o
p

w
a
s

m
o
d
e

b
y

t
h
e

J
U
M
P

i
n
s
t
u
c
t
i
o
,
.

T
r
o

s
t
o
p
p
i
n
g

r
u
l
e

w
a
s

s
t
o
o
l
.
:

i
f

t
h
e

8

r
e
g
i
s
t
e
r
'
s

v
a
l
u
e

m
c
e

z
e
r
o
,

i
t

w
a
s

t
i
A
e

t
o

t
o
o

t
y
o
i
n
g

t
h
a
r
a
c
t
e
r
s
.

I
n

o
t
h
e
r

b
o
r
e
s
,

t
h
e

a
n
s
w
e
r

t
o

t
h
e

o
u
e
s
t
i
o
n
t

'
I
s

i
t

t
i
m
e

t
o

s
t
o
p
?
"
.

w
a
s

'
T
r
u
e
"

i
f

t
h
e
r
e

w
a
s

a

z
e
r
o

i
n

t
h
e

8

r
e
g
i
s
t
e
r

w
h
e
n

J
U
m
P

w
a
s

e
x
e
c
u
t
e
d
.

O
t
h
e
r
w
i
s
e

t
h
e

a
n
s
w
e
r

w
a
s

'
F
a
l
s
e
"
,

Y
o
u

m
a
y

r
e
s
i
s
t
:
o
r
,

w
h
e
n

y
o
u

f
i
r
s
t

s
a
w

J
U
M
P

i
n

P
a
r
t

S
.

t
h
a
t

w
e

s
a
i
d

i
t

i
s

u
o

t
o

y
o
u

t
o

d
e
c
i
d
e

w
h
e
t
h
e
r

S
e
r
e

I
n

r
e
g
i
s
t
e
r

m
e
a
n
s

'
t
r
u
e
"

o
r

'
f
a
l
s
e
"

w
h
e
n

y
o
u

u
s
e

J
U
M
P

t
o

m
a
k
e

a

d
e
c
i
s
i
o
n
,

C
A
S

A

T
h
e

p
r
o
g
r
a
m
:

A
S
R

8

Y
o
u
'
v
e

b
e
e
n

u
s
i
n
g

h
a
s

a

D
u
g
.

h
E
G

B

J
U
M
P

B

.
.
2

(
A
G
A
I
N
)

M
A
L

C
A
R

A

I
N
C

8

P
U
T

P

A
G
A
I
N

P
l
e
a
s
e

R
U
N

i
t

a
g
a
i
n

w
i
t
h

E
N
T
E
R
,

t
y
p
e

a

c
h
a
r
a
c
t
e
r

a
n
d

t
h
a
n

s
m
a
l
l

n
e
g
a
t
i
v
e

n
u
m
b
e
r
.

l
i
k
e

m
2

o
r

.
3
.

N
o
t
i
c
e

w
h
i
s
t

h
a
p
p
e
n
s

t
o

t
h
e

B

r
e
g
i
s
t
e
r
'
s

v
a
l
u
e

a
s

t
h
e

p
r
o
g
r
a
m

r
u
b
e
.

$
2
3

P
a
r
t

1
2

Y
o
u

a
r
e

n
o
w

e
x
p
e
r
i
e
n
c
e
:
,

i
n

w
r
i
t
i
n
g

P
r
o
c
e
d
u
r
e
s

t
h
a
t

c
o
n

b
e

l
o
l
l
e
d

f
r
o
m

a
n
y

p
l
a
c
e

i
n

y
o
u
r

P
r
o
g
r
a
m
a
.

A
n
d

y
o
u

a
r
e

a
l
m
o
s
t

r
e
e
d
y

1
,
1
,

w
r
i
t
e

A
G
A
1
A
P
r
o
g
r
a
m
s

w
h
i
c
h

P
e
k
e

t
h
e

t
y
p
e
w
r
i
t
e
r

p
r
i
n
t

s
i
g
n
s
,

p
i
c
t
u
r
e
s

a
n
d

a
n
y
t
h
i
n
g

e
l
s
e

Y
O
U

C
a
n

t
h
(
n
.

u
p
.

T
h
e

n
e
x
t

t
h
i
n
g

t
o

l
e
a
r
n

i
s

h
o
w

t
o

r
a
k
e

a

p
r
o
g
r
a
m

(
p
r
o
c
e
d
u
r
e
)

s
t
o
o

i
t
s
e
l
f

a
s

s
o
o
n

a
s

i
t

f
i
n
i
s
h
e
s

i
t
s

J
o
b
.

Y
o
u

m
u
s
t

w
r
i
t
e

I
n
s
t
r
u
c
t
i
o
n
s

i
n
t
o

Y
o
u
r

P
r
o
g
r
a
m
s

w
h
i
c
h

:
M
e
l
e
e

w
I
e
n

t
h
e

p
r
o
g
r
a
m
s

s
h
o
u
l
d

s
t
o
p

a
n
d

w
h
e
n

t
h
e
y

s
h
o
u
l
d

S
e
e
p

w
o
r
k
i
n
g
.

Y
o
u

k
n
o
w

O
n
e

o
p
e
r
a
t
i
o
n

w
h
i
c
h

C
a
n

b
e

u
s
e
d

f
o
r

m
a
k
i
n
g

d
e
c
i
s
i
o
n
s
.

I
t

i
s

a
T
4
i

*
d
e
c
i
d
e
s

w
h
e
t
h
e
r

t
h
e

S
i
m
p
e
r

c
o
m
p
u
t
e
r

w
i
l
l

x
e
s
y
t
e

t
h
e

n
e
x
t

i
n
s
t
r
u
c
t
i
o
n

i
n

a

P
r
o
g
r
a
m
,

f
r

a
n

i
n
s
t
r
u
c
t
i
o
n

a
t

a
n
y

o
t
h
e
r

p
l
a
c
e

i
n

,
-
-
-
-
-

tf
(2

0
1

t
h
e

p
r
o
g
r
a
m
,

I
f

y
o
u

f
o
r
g
e
t

h
o
w

J
U
M
P

w
o
r
k
s

l
e
e
k

a
t

t
h
e

t
a
b
l
e

I
n

P
a
r
t

S
.

if
A

i J
fi

ft
1;

\ ;
iv

 1
-1

 m
1/

H
,

-t
o

i
1

i i
iii

r(
' I

,,r
S
i
m
p
e
r

S
i
m
p
e
r

h
a
s

a
n
o
t
h
e
r

o
p
e
r
a
t
i
o
n

t
o

h
e
l
l
s

y
o
u
r

p
r
o
g
r
a
m
s

m
a
k
e

U
!
:
.
1
1

W
i
r
d
A
i
i

d
e
c
i
s
i
o
n
s
,

I
t

i
s

V
i
e

I
t

l
o
o
k
s

a
t

t
w
o

H
u
m
b
e
r
t
,

D
o

y
o
u

t
h
i
n
k

t
h
e

p
r
o
g
r
a
m

w
i
l
l

e
v
e
r

'
t
o
o
?

y
e
s

C
h
e
c
k

t
h
a
t

y
o
u

h
a
v
e

t
h
e

P
r
o
g
r
a
m

b
o
V
k
.

T
h
e

n
u
m
o
o
r

y
o
u

t
y
o
e
d

w
a
s

*
*

.
7
;
1

s

a
n
d

t
h
e

N
E
G
A
T
E

i
n
e
t
r
U
c
t
i
o
n

c
h
a
n
g
e
d

i
t

t
o

E
a
c
h

t
i
n
e

t
h
e

C
h
a
r
a
c
t
e
r

w
a
s

p
r
i
n
t
e
d
.

I
N
C
R
E
M
E
N
T

a
d
d
e
d

t
o

t
h
e

B

r
e
g
i
s
t
e
r
'

v
a
l
u
e
.

T
h
e

s
t
o
p
p
i
n
g

r
u
l
e

t
h
a
t

w
o
r
k
e
d

b
e
f
o
r
e

w
i
l
l

n
o
t

w
o
r
k

f
o
r

n
e
g
a
t
i
v
e

i
v
e

i
n
p
u
t

n
u
m
o
t
r
s

b
e
c
a
u
s
e

t
h
e

8

r
e
g
i
s
t
e
r
'
s

v
a
l
u
e

w
i
l
l

n
e
v
e
r

b
e
c
o
m
e

o

t
h
e

J
U
M
P

i
n
s
t
r
w
.
i
o
n

w
i
l
l

a
l
w
a
y
s

C
a
u
s
e

S
i
m
p
e
r

t
o

g
o

o
f
t
e
a
d

a
n
d

e
x
e
c
u
t
e

t
h
e

,
1
-
f
U
l
t
t
N
-

i
n
s
t
r
u
e
t
i
o
n
.

o
n
e

t
h
a
t

i
s

i
n

r
e
g
i
s
t
e
r

a
n
d

o
n
e

t
h
a
t

i
n

i
n

a

m
e
m
o
r
y

l
e
g
a
t
i
O
M
.

T
h
e

i
n
s
t
r
u
c
t
i
o
n

t
h
a
t

S
i
m
p
e
r

e
x
e
c
u
t
e
s

n
e
x
t

d
e
p
e
n
d
s

O
h

t
h
e

v
a
l
u
e
s

o
f

t
h
e

t
w
o

C
i
M
P
I
R

l
o
o
k
e
d

a
t
.

n
u
m
b
e
r
s

t
h
a
t

T
h
e

P
r
e
s
e
t
,

o
f

d
o
i
n
g

s
o
m
e
t
h
i
n
g

o
v
e
r

a
n
d

e
v
e
r

u
n
t
i
l

i
t

h
a
s

'
c
o

d
o
n
e

j
u
s
t

t
h
e

r
i
g
h
t

n
u
m
b
e
r

e
t

t
i
m
e
s

i
s

c
a
l
l
e
d

g
l
i
e
r
e
t
i
o
n
a

o
r

r
e
c
u
r
s
i
o
n

w
i
t
h

*
s
t
o
o
p
i
n
g

r
u
l
e
'
,

M
o
s
t

o
f

t
h
e

p
r
o
g
r
a
m
s

y
o
u
'
v
e

w
r
i
t
t
e
n

e
i
t
h
e
r

e
x
e
c
u
t
e
d

a
l
l

t
h
e
i
r

i
n
s
t
r
u
s
t
i
o
n
s

J
u
s
t

o
n
c
e

a
n
d

s
t
o
p
p
e
d
,

o
r

e
x
e
c
u
t
e
d

t
h
e
w

f
o
r
e
v
e
r

(
u
n
t
i
l

Y
O
Y

s
l
o
t

t
i
r
e
d

a
n
d

t
r
i
e
d

s
o
n
t
r
o
l

G
)
,

N
e
w

l
e
t
'
s

w
r
i
t
e

t
w
o

s
h
o
r
t

P
r
O
O
r
O
O
l
e

l
o
t
h

w
i
l
l

d
e

t
h
e

O
U
R
S

6
7
5

I
I

s
t
a
t
e
m
e
n
t

s
l

I
s

t
r
u
e
,

C
C
m
P
A
C
E

c
o
o
s

n
o
t
m
i
r
g
.

I
t

a
l
l
o
w
s

t
h
e

S
i
m
o
a
r

c
c
-

:
,
,
t
e
r

t
o

e
x
e
c
u
t
e

t
h
e

I
n
s
t
r
u
c
t
i
o
n

w
h
i
c
h

i
m
m
o
o
l
a
t
o
l
y

f
o
l
l
o
w
s

t
h
e

C
:
0
P
A
R
E

I
f

s
t
a
t
e
m
e
n
t

=
2

i
s

t
r
u
e
.

C
C
v
P
:
A
E

r
a
k
e
s

5
1

-
p
e
r

s
k
i
p

t
P
e

n
e
x
t

i
P
s
t
m
L
e
t
i
o
n
.

I
f

s
t
a
t
e
m
e
n
t

s
3

I
s

t
r
u
e
,

C
e
m
P
J
A
E

m
a
c
e
s

S
i
m
p
e
r

s
k
i
p

t
h
e

C
O

n
e
x
t

t
w
o

I
n
s
t
r
c
t
i
o
n
s
.

F
o
r

e
x
a
-
p
l
c
,

i
f

r
e
g
i
s
t
e
r

A

a
n
d

l
o
c
a
t
i
o
n

X

h
a
v
e

M
i

;
4

t
h
e

v
a
l
u
e
s

s
h
o
w
n

b
e
l
o
w
,

t
h
e
n

a

C
C
M
P
A
R
E

i
n
s
t
r
u
c
t
i
o
n

w
i
l
l

c
a
u
s
e

S
i
m
p
e
r

t
o

s
k
i
p

o
r

r
o
t

s
k
i
p
,

a
s

s
h
o
w
n

h
e
r
e
:

C
r

A
s

3

X
i

2

C
C
M
P
A
R
E

A

X

aa
a

'a
xl

es
.

A
s

2

X
I

2

/
e
-
C
O
M
P
A
R
E

A

X

A
t

1

X
I

2

C
C
O
M
P
A
R
E

A

X

T
h
e

p
r
o
g
r
a
m

o
n

t
h
e

p
r
e
v
i
o
u
s

p
a
c
e

u
s
e
d

t
h
i
s

s
e
q
u
e
n
c
e

o
f

i
n
s
t
r
u
c
t
i
o
n
s
:

C
O
M
P
A
R
E

B

C
O
U
N
T

T
h
e

s
t
o
p
p
i
n
g

r
u
l
e

w
h
i
c
h

t
h
i
s

`
O
P

M
A
L
T

C
W
R
I
T
E

D
i
d

t
h
e

p
r
o
g
r
a
m

S
t
o
p

e
v
e
n

f
o
r

n
e
g
a
t
i
v
e

n
u
m
b
e
r
?

i
n

P
r
o
d
u
c
e
d

w
a
s

"
s
t
o
p

w
h
e
n

t
h
e

v
a
l
u
e

i
n

E
l

i
s

g
r
e
a
t
e
r

t
h
a
n

o
r

e
q
u
a
l

t
o

t
o
*

E
S

N
O

v
a
l
u
e

i
n

C
O
U
N
T
"
.

T
h
i
s

"
g
r
e
a
t
e
r

t
h
a
n
"

p
a
r
t

o
f

t
h
o

r
u
l
e

i
s

w
h
a
t

k
i
l
l
e
d

p
a

t
h
e

b
u
g

t
r
a
t

b
i
t

t
h
e

f
i
r
s
t

p
r
o
g
r
a
m
.

I
n

t
h
e

s
e
c
o
n
d

p
r
o
g
r
a
m
,

i
f

y
o
u

t
y
p
e
o

a

n
e
g
a
t
i
v
e

n
u
m
b
e
r

t
o

t
h
e

A
S
K
,

i
t

w
e
n
t

I
n
t
o

r
e
g
i
s
t
e
r

o
n
o

T
h
e
t
i
s

b
e
c
a
u
s
e

C
O
M
P
A
R
E

i
s

s
o
r
e

p
o
w
e
r
f
u
l

t
h
a
n

J
U
N
I
,
,

c
O
m
P
A
R
E

d
o
s
s

w
h
a
t

w
a
s

s
t
e
r
e
o

i
n

l
o
c
a
t
i
o
n

T
h
e

P
U
T

i
n
s
t
r
u
c
t
i
o
n

m
a
c
s

B

h
a
v
e

t
h
e

i
t
s

n
a
m
e

s
u
g
g
e
s
t
s
,
.

I
t

l
o
o
k
s

a
t

t
w
o

n
u
m
b
e
r
s
,

o
n
e

i
n

r
e
g
i
s
t
e
r
,

t
h
e

V
a
l
u
e

T
h
e

C
O
M
P
A
R
E

B

C
O
U
N
T

t
h
e
n

s
a
w

t
h
a
t

t
h
e

v
a
l
u
e

i
n

C
C
U
h
T

O
t
h
e
r

I
n

a

m
e
m
o
r
y

l
o
c
a
t
i
o
n

a
n
d

e
o
s
p
a
r
s
s

t
h
e
i
r

v
a
l
u
e
s
.

I
t

d
e
c
i
d
e
s

w
h
i
c
h

m
e
: 0 m
t

w
a
s

.
m
a
n

t
h
e

v
a
l
u
e

i
n

S
.

T
h
e
t
i
s

p
o
s
s
i
b
i
l
i
t
y

N

o
n

V
i
a

o
n
o
/

o
f

t
h
r
e
e

p
o
s
s
i
b
l
e

O
t
e
t
e
e
e
n
t
e

a
b
o
u
t

t
h
e

t
w
o

n
u
m
b
e
r
s
,

i
s

t
r
u
s
t

6
6
3

T
h
e

b
u
g

i
n

t
h
e

f
i
r
s
t

p
r
o
o
f
'
s
*

i
s

e
a
s
i
l
y

c
u
r
e
d

b
y

u
s
i
n
g

C
O
M
P
A
R
E

I
n
s
t
s
a
o

o
f

J
O
N
o
.

T
h
i
s

i
s

t
h
e

*
s
c
o
r
i
a

p
r
o
g
r
a
m
.

P
l
e
a
s

u
s
e

F
I
X

o
n
o

S
L
I
D
E

t
o

c
h
a
n
g
e

t
h
e

p
r
e
v
i
o
u
s

P
r
o
g
r
e
%

'
s
o

i
t

1
0
1

0
0
1

!
C
A
S
K

A

0
0
2

1
A
S
4

0
0
3

W
O
R
E

8

C
O
U
R
T

0
0
4

s
P
,
T

8

0

0
0
5

I
C
O
M
P
A
R
E

8

C
O
U
N
T

0
0
6

!
N
O
P

0
0
7

s
m
A
L
T

0
0
8

I
C
R
R
I
T
E

A

0
0
9

!
I
N
C
R
E
M
E
N
T

8

0
1
0

t
P
U
T

P

A
G
A
I
N

/

A
S
K

n
u
m
A
\

s
m
A
T

C
H
A
R
A
C
T
E
R

I
S

T
O

B
E

T
Y
P
E
D

/

A
S
K

M
U
m
A
h

M
G
.

P
A
N
T

T
I
M
E
S

T
O

T
Y
P
E

I
T

/

S
A
V
E

T
,
A
T

I
N

A

L
O
C
A
T
I
C
S

C
A
L
L
E
D

C
O
J
N
T

/

C
L
E
A
R

T
H
E

8

R
E
G
I
S
T
E
R

/

T
Y
P
E

S
O
M
E

M
O
R
E
?

/

h
0
1

/

N
O
I

/

Y
E
S
I

/

C
H
A
R
A
C
T
E
R

H
A
S

B
E
E
N

T
Y
P
E
D

O
N
C
E

M
O
R
E

/

G
O

S
E
E

I
F

E
N
O
U
G
H

H
A
V
E

B
E
E
N

T
Y
P
E
D

B
e
f
o
r
e

r
u
n
n
i
n
g

t
h
i
s

p
r
o
g
r
a
m
,

b
e

s
u
r
e

t
o

N
A
M
E

l
o
c
a
t
i
o
n

5

t

0

A
G
A
I
N

a
n
d

N
A
M
E

s
o
m
e

l
o
c
a
t
i
o
n

o
u
t
s
i
d
e

y
o
u
r

p
r
o
g
r
a
m

t
o

b
s

C
O
U
N
T
,

O
k
,

R
U
N

i
t

a
n
d

t
r
y

t
o

f
i
n
d

o
u
t

h
o
w

w
i
d
e

t
h
e

t
y
p
e
w
r
i
t
e
r

P
I
O
'
'
,

i
s
.

*
h
e
e
l
s

t
h

l
a
r
g
e
s
t

n
u
m
b
e
r

o
f

c
h
a
r
a
c
t
e
r
s

y
o
u
r

p
r
o
g
r
a
m

c
a
n

t
y
p
e

o
n

o
n
e

l
i
n
e
?

.
/
:
;
1
.

R
U
N

i
t

s
e
v
e
r
a
l

t
i
n
e
s

A
n
d

t
r
y

t
y
p
i
n
g

n
e
g
a
t
i
v
e

n
u
m
b
e
r

t
o

t
h
e

A
S
K
,

C
h
e
c
k

t
h
a
t

y
o
u
r

p
r
o
g
r
a
m

i
s

t
h
e

o
n
e

a
b
o
v
e
,

p
r
o
y
d
o
.
.
s

p
a
c
e
,

s
o

t
h
e

n
e
x
t

i
n
s
t
r
u
c
t
i
o
n

S
i
m
p
e
r

e
x
e
c
u
t
e
d

w
a
s

N
C
P
,

3
u
t

M
C
P

s
t
e
n
o
s

f
o
r

"
n
o

o
p
e
r
a
t
i
o
n
"

o
r

"
d
o

n
o
t
h
i
n
g
"
,

s
o

t
h
e

n
e
x
t

i
n
s
t
r
u
c
t
i
o
n

a
x
e
:
g
e
e
d

a
n
d

t
h
a
t

s
t
o
p
p
e
d

t
h
e

p
r
o
g
r
a
m
.

h
e
n

y
o
u

r
a
n

t
h
e

s
e
c
o
n
d

p
r
o
c
r
a
m

a
n
d

y
e
w

t
y
p
o
o

a

p
o
s
i
t
i
v
e

n
o
:
m
o
s
s
o

i
t

s
c
.
;

a
l
s
o

s
t
a
r
e
d

i
n

T
h
e

v
a
l
u
e

i
n

t
h
e

r
e
g
i
s
t
e
r

a
l
s
o

s
t
a
r
t
e
o

e
t

B
u
t

n
o
w

t
h
e

C
O
M
P
A
R
E

i
n
s
t
r
u
c
t
i
o
n

S
e
w

t
h
a
t

t
h
e

v
a
l
s

O
t

I
,

T
h
e

n
u
m
b
e
r

i
n

m
e
m
o
r
y

i
s

s
m
a
l
l
e
r

t
h
a
n

t
h
e

n
u
m
b
e
r

i
n

t
h
e

r
e
g
i
s
t
e
r
,

2
.

T
h
e

n
u
m
b
e
r

i
n

m
e
m
o
r
y

i
s

s
o
u
s
l

t
o

t
h
e

n
u
m
b
e
r

I
n

t
h
e

r
e
g
i
s
t
e
r
,

i
t

T
h
e

n
u
m
b
e
r

i
n

m
e
m
o
r
y

i
s

g
r
e
e
t
e
r

t
h
a
n

t
h
e

n
w
0
0
0
p

i
n

t
h
e

r
e
g
i
s
t
e
r
,

0

C
O
U
N
T

R
a
p
t

1
3

N
o
w

l
e
t
'
s

w
r
i
t
e

P
e
t
t
i
t
.

p
r
o
g
r
a
m

t
h
a
t

c
a
n

e
n
t
e
r
°

a
n
y

l
e
t
t
e
r

i
n

J
U
M
P
.

I
t

i
s

s
t
i
l
l

u
s

t
o

y
o
u

t
o

d
a
t
o
r
m
i
n
o

w
h
e
t
h
e
r

a
n
y

d
e
e
l
n
i
o
n

m
o
d
e

b
y

t
h
e

s
l
o
s
b
a
t

i
n

a
n
y

s
h
e
t
1

Y
O
U

w
i
s
h
.

T
o

d
o

t
h
i
s
,

Y
o
u

m
u
s
t

u
n
d
e
r
s
t
a
n
d

s

e
n
w
e
A
R
E

i
n
s
t
r
u
c
t
i
o
n

m
o
s
s

'
t
r
u
e
'

o
r

'
f
a
l
s
e

I
n

y
o
u
r

a
r
c
*
*
*
*
*
.

h
o
w

t
o

*
s
t
i
n
t
,

p
r
o
c
o
u
r
o

o
n
o

i
t
s

c
a
l
l
i
n
g

s
e
q
u
e
n
c
e

(
s
e
e

P
a
r
t

1
1
)
,

n
o
w

t
o

u
s
e

r
e
l
a
t
i
v
e

a
n
d

I
n
d
i
r
e
c
t

a
d
d

(
s
o
,

P
a
r
t
s

9

a
n
d

1
0
)
,

a
n
d

h
o
w

(
"
)

S
i
m
p
e
r

e
x
e
c
u
t
e
s

J
L
M
P

a
n
d

C
O
M
P
A
R
E

(
s
.
.

p
a
r
t

1
2
)
.

A
A
AA

P
l
e
a
s
e

l
a
s

S
C
R
A
T
C
H

t
o

e
r
a
s
.

a
n
y

P
r
o
g
r
a
m

Y
o
u

m
i
g
h
t

n
o
w

h
a
w
.

I
n

.
W
o
o
P
y
.

W
e
i
l
l

b
u
l
i
d

y
o
u
r

p
r
o
g
r
a
m

P
i
e
c
o
m
b
y
p
f
o
c
o
.

M
a
r
a
i
s

t
h
e

f
i
r
s
t

p
a
r
t
:

i
t

w
i
l
l

t
y
p
e

o
u
t

e
x
a
c
t
l
y

f
i
v
e

c
h
a
r
a
c
t
e
r
s

f
r
o
m

m
e
m
o
r
y

D
>

l
o
c
o
t
i
o
n

u
s
i
n
g

R
O
T
A
T
E

O
l
e
o

P
o
r
t

9
)
1

co z

A
A
A
A
A

A
A
A

A
.

P
U
T

A

5

/

M
A
K
E

A

5

F
O
R

C
O
U
N
T
I
N
G

C
H
A
R
A
C
T
E
R
S

S

0

A

F
I
V
E

/

S
A
V
E

I
T

L
O
A

A

S
T
R
I
N
G

/

G
E
T

T
H
E

C
H
A
R
A
C
T
E
R
S

T
O

T
Y
P
E

P
U
T

8

0

/

C
L
E
A
R

T
H
E

B

R
E
G
I
S
T
E
R

C
O
N

8

F
I
V
E

/

T
Y
P
E
D

5

C
H
A
R
A
C
T
E
R
S

Y
E
T
?

N
O
P

/

Y
E
S
)

H
A
L
T

/

Y
E
S
I

R
O
T

A

L
2

/

G
E
T

N
E
X
T

C
H
A
R
A
C
T
E
R

R
E
A
O
Y

C
W
R

A

/

T
Y
P
E

I
T

I
N
C

8

/

K
E
E
P

C
O
U
N
T

P
U
T

P

M
O
R
E

/

G
O

B
A
C
K

F
O
R

M
O
R
E

C
H
A
R
A
C
T
E
R
S

J
U
M
P

a
n
d

C
O
M
P
A
R
E

a
l
l
o
w

y
o
u
r

p
r
o
g
r
a
m
s

t
o

m
a
k
e

d
e
c
i
s
i
o
n
s

a
n
d

s
o

c
h
a
n
g
e

t
h
e
i
r

'
m
i
n
d
s
'

a
b
o
u
t

w
h
e
t

t
o

d
o

h
o
s
t
,

T
h
i
s

a
b
i
l
i
t
y

i
s

c
e
l
i
a
c
!

"
P
r
o
g
r
a
m

c
o
n
t
r
o
l
'
.

I
t

i
s

o
n
e

o
f

t
h
e

m
o
s
t

i
m
o
o
r
t
s
n
t

b
i
l
i
t
i
o
s

t
h
a
t

a
n
y

9
i
a
u
p
p
t
e

c
o
m
p
u
t
e
r

r
u
s
t

h
a
v
e
.

A

c
o
m
o
u
t
o
r

m
u
s
t

b
e

a
b
l
e

t
o

m
a
k
e

d
e
c
i
s
i
o
n
s
,

e
e
e
e

e
n
d

e
x
e
c
u
t
e

p
r
o
g
r
a
m

t
h

i
t
.

m
e
m
o
r
y
,

e
n
d

k
n
o
w

e
n
o
u
g
h

i
n
s
t
r
u
c
t
i
o
n
s

b
e
f
o
r
e

i
t

c
a
n

b
e

u
s
e
d

t
o

p
l
a
y

g
a
m
e
s
,

d
r
e
w

P
i
c
t
u
r
e
s

o
r

a
n
s
w
e
r

O
u
s
s
t
i
o
n
i
.

T
h
o
s
t
w
e

p
r
e
v
i
o
u
s

P
r
O
g
r
o
m
s

m
a
d
*

d
e
c
i
s
i
o
n
s

a
b
o
u
t

e
t
o
p
o
i
n
g

w
h
a
t

t
h
e
y

w
o
r
e

d
o
i
n
g
.

I
n

t
h
i
s

c
a
s
e
,

s
i
n
c
e

t
h
e
y

w
a
r
e

o
n
l
y

d
o
i
n
g

o
n
o

t
h
i
n
g

(
t
y
p
i
n
g

t
h
e

c
h
a
r
a
c
t
e
r

Y
O
U

a
s
k
e
d

f
o
e
)
,

s
t
o
p
p
i
n
g

t
h
a
t

s
c
a
n
t

s
t
o
p
p
i
n
g

t
h
e

W
h
a
l
e

P
r
o
O
P
O
P
.

T
h
a
t

d
o
e
s
n
'
t

a
l
w
a
y
s

h
a
v
e

t
o

b
e

t
h
e

e
a
s
e
.

S
o
n
o

o
t
h
e
r

p
r
o
g
r
a
m
s

y
o
u
'
l
l

w
r
i
t
s

w
i
l
l

d
o

o
n
e

t
h
i
n
g

f
o
r

w
h
i
t
e
,

t
h
e
n

o
e
c
i
d

t

s
t
o
p

t
h
a
t

B
Y

u
s
i
n
g

J
U
M
P

s
r

C
O
M
P
A
R
E
,

a
n
d

t
h
a
n

O
s

s
o
m
e
t
h
i
n
g

e
l
s
e

u
n
t
i
l

a

d
o
e
l
s
i
e
n

i
s

m
a
d
e

t
o

s
t
e
p

t
h
a
t
,

t
f
l
o

?
)

B
o
f
o
r
s

y
o
u

r
u
n

t
h
i
s

p
r
o
g
r
a
m
,

N
A
M
E

t
h
e

l
o
c
a
t
i
o
n

c
o
n
t
a
i
n
i
n
g

t
h
e

R
e
m
e
m
b
e
r

t
h
a
t

t
h
e

P
P

e
e
e
e
e

o
f

d
o
i
n
g

s
e
/
n
o
t
h
i
n
g

o
v
e
r

e
n
d

e
v
e
r

i
s

D
>

C
O
M
P
A
R
E

t
o

b
e

M
O
R
E
,

t
h
e
n

N
A
M
E

t
w
o

l
o
c
a
t
i
o
n
s

o
u
t
s
i
d
e

y
o
u
r

p
r
o
g
r
a
m

F
I
V
E

t
i
l
l
e
d

l
t
o
r
o
t
i
o
n

r

r
e
e
u
r
s
i
o
n
.

W
h
e
n

w
h
a
t

i
s

b
e
i
n
g

d
o
n
e

h
a
s

a

g
o
a
l
,

a
n
d

S
T
R
I
N
G
.

F
i
n
a
l
l
y
,

F
I
X

S
T
R
I
N
G

a
n
d

t
y
p
o

a

n
u
m
b
e
r

t
h
e
r
e

t
h
a
t

c
o
n
t
a
i
n
s

t
h
a
n

t
h
o
r
s

i
s

s
o
r
e

s
t
o
p
p
i
n
g

r
u
l
e

w
h
i
c
h

d
e
c
i
d
e
s

w
h
e
n

t
h
e

0
0
0
1

i
s

N
C
D

O
n
e

C
O
O
.

(
S
e
e

P
a
n
t

6
)

f
o
r

a
n
y

f
i
v
e

c
h
a
r
a
c
t
e
r
s
.

N
o
w

R
U
N

y
o
u
r

O
P
O
O
P
a
n

r
e
a
c
h
e
d
,

T
h
e

t
w
o

p
r
e
e
m
p
t

y
o
u
l
v
o

1
-
1

w
i
t
h

E
N
T
E
R

a
n
d

o
b
s
e
r
v
e

t
h
e

v
a
l
u
e
s

i
n

t
h
e

r
e
g
i
s
t
e
r
s
.

U
S
'
S

i
n

t
h
i
s

s
e
c
t
i
o
n

h
a
d

t
h
e

s
a
m
e

0
0
6
1
.

I
t

w
e
e

t

t
y
p
o

o
u
t

t
h
e

D
i
d

y
o
u
r

p
r
o
g
r
a
m

s
t
o
p

i
t
s
e
l
f

a
f
t
e
r

t
y
p
i
n
g

a
l
l

f
i
v
e

*
h
a
r
m
:
t
o
r
s

i
n

S
T
R
I
N
G
?

o
h
o
p
a
e
t
o
r

y
o
u

w
a
n
t
e
d

a
s

m
a
n
y

t
i
m
e
s

Y
E
S

N
O

1
1
1

1
1
(

O
S

y
e
w

w
o
n
t
e
d
.

B
o
t
h

p
r
o
g
r
a
m
s

u
s
e
d

C
h
e
c
k

y
o
u
r

p
r
o
g
r
a
m

o
r

a
s
k

f
o
r

h
a
l
o
s

i
t
e
r
a
t
i
o
n

t
o

r
e
d
u
c
e
'
s
*

t
o
r
e

t
h
e

d
i
f
f
e
r
e
n
c
e

b
e
t
w
e
e
n

t
h
e

g
o
a
l

(
t
h
e

)
(
M
i
t
t
s

t
n
o

s
t
o
p
p
i
n
g

r
u
l

t
h
a
t

i
t

u
s
e
s
?

n
u
m
b
e
r

y
o
u

t
y
p
e
d
)

a
n
d

t
h
e

n
u
m
b
e
r

o
f

e
h

i
n
t
o
d
,

T
h
e

S
e
a
l

tdtd ; c
n

75

M
e
s
s
a
g
e
s

s
t
o
r
e
d

t
h
i
s

w
a
y

a
r
e

C
o
i
l
e
d

"
s
t
r
i
n
g
s
'

b
e
c
a
u
s
e

t
h
e
i
r

c
h
a
r
a
c
t
e
r
s

o
c
c
u
r

i
n

m
e
m
o
r
y

o
n
e

a
f
t
e
r

t
h
e

o
t
h
e
r
,

l
i
k
e

b
e
a
n
s

o
n

a

s
t
r
i
n
g
.

S
t
r
i
n
g
s

h
a
v
e

b
e
g
i
n
n
i
n
g
s

(
t
h
e
i
r

f
i
r
s
t

.
c
h
e
r
a
c
t
e
r
)

o
n
o

*
n
o
s

(
t
h
e
i
r

l
a
s
t
)
.

E
v
e
n

t
h
o
u
g
h

t
h
e
y

e
r
e

s
t
o
r
e
d

i
n

S
i
m
p
e
r
'
s

m
e
-
o
r
y

a
s

n
u
m
b
e
r
s
.

y
o
u
r

T
Y
P
E

P
r
o
c
e
d
u
r
e

t
r
a
n
s
l
a
t
e
s

t
h
e
m

I
n
t
o

c
h
a
r
a
c
t
e
r
s
.

S
o

w
h
e
t

T
Y
P
E

a
c
e
s

i
s

g
i
v
e

$
i
a
p
a
r

n
e
w

w
a
y

o
f

s
t
o
r
i
n
g

i
n
f
o
r
m
a
t
i
o
n
,

I
n
f
o
r
m
a
t
i
o
n

i
s

o
f
t
e
n

c
e
l
l
e
d

'
d
a
t
a
"
,

s
o

n
o
w

y
o
u

c
a
n

m
a
k
e

S
i
m
p
e
r

p
r
o
g
r
a
m
a

t
h
a
t

"
u
n
d
e
r
s
t
a
n
c
,

t
w
o

k
i
n
d
s

o
f

d
o
t
a
l

s
t
r
i
n
g
s

a
n
d

n
u
m
b
e
r
s
.

A

m
e
t
h
o
d

f
o
r

s
t
o
r
i
n
g

d
a
t
a

i
s

c
e
l
l
s
°

'
d
a
t
a

-

s
t
r
u
c
t
u
r
e
"
.

l
i
m
p
e
r

n
o
r
m
a
l
l
y

l
e
t
s

y
o
u

u
s
e

t
h
e

d
a
t
a

-

s
t
r
u
c
t
u
r
e

o
f

t
e
n
m
d
i
g
i
t

n
u
m
b
e
r
s
,

T
Y
P
E

l
e
t
s

Y
o
u

u
s
e

s
t
r
i
n
g

d
a
t
a

-

s
t
r
u
c
t
u
r
e
s

t
o
o
.

I
s

T
Y
P
E

a

f
u
n
c
t
i
o
n
?

Y
E
S

N
O

D
o
e
s
n
'
t

I
t

a
c
c
e
p
t

e
n

i
n
p
u
t

(
a

s
t
r
i
n
g
)

a
n
d

p
r
o
d
u
c
e

a
n

o
u
t
o
u
t

(
p
r
i
n
t

t
h
e

s
t
r
i
n
g

o
n

t
h
e

t
y
p
e
w
r
i
t
e
r
)
?

O
n
e

v
e
r
y

i
m
p
o
r
t
a
n
t

t
h
i
n
g

a
b
o
u
t

P
r
o
g
r
a
m
m
i
n
g

c
o
m
p
u
t
e
r
s

i
s

t
h
a
t

f
u
n
c
t
i
o
n
s

c
a
n

d
e
f
i
n
e

n
e
w

d
a
t
e
m
s
t
r
u
c
t
u
r
e
s
.

S
i
n
c
e

y
o
u

d
e
f
i
n
e

f
u
n
c
t
i
o
n
s

b
y

w
r
i
t
i
n
g

P
r
o
c
e
d
u
r
e
s
,

y
o
u

c
o
n

m
a
k
s

a
n
y

c
o
m
p
u
t
e
r

u
s
e

a
n
y

d
a
t
a
m
s
t
r
u
c
t
u
r
e

y
o
u

p
l
e
a
s
e
.

P
l
e
a
s
e

l
o
o
k

u
p

"
d
a
t
a
"

a
n
d

"
s
t
r
u
c
t
u
r
e
"

i
n

a

d
i
c
t
i
o
n
a
r
y
,

S
a
v
a

y
o
u
r

p
r
o
g
r
a
m

i
f

y
o
u

w
i
s
h
.

N
o
w

w
r
i
t
e

p
r
o
c
e
d
u
r
e

t
h
a
t

i
s

l
e
t

l
i
k
e

T
Y
P
E

e
x
c
e
p
t

t
h
a
t
,

i
n
s
t
e
s
o

o
f

t
y
p
i
n
g

o
u
t

c
h
a
r
a
c
t
e
r
s
,

I
t

r
e
b
o
i
l

t
h
e
m

I
n

f
r
o
m

Y
O
u

a
n
d

s
t
o
r
e
s

t
h
e
m

a
w
a
y
,

f
i
v
e

p
e
r

l
o
c
a
t
i
o
n
,

i
n

s
e
o
6
e
n
c
e

o
f

l
o
c
a
t
i
o
n
s
.

Y
o
u

m
a
y

a
l
s
o

m
e
l
e
e

I
t

s
o

y
o
u

c
a
n

t
y
p
e

a

s
p
e
c
i
a
l

c
h
a
r
a
c
t
e
r

(
l
i
k
e

E
N
T
E
R

s

2
7
)

t
o

t
e
l
l

i
t

t
o

e
n
d

t
h
e

s
t
r
i
n
g

w
i
t
h

a

z
e
r
o
.

T
h
a
n

I
f

Y
O
U

c
o
m
b
i
n
e

t
h
i
s

w
i
t
h

y
o
u
r

T
Y
P
E

p
r
o
c
e
d
u
r
e
,

y
o
u

c
a
n

l
o
a
d

u
p

m
e
s
s
a
g
e
s

a
n
d

P
o
s
t
e
r
s

b
y

t
y
p
i
n
g

t
h
e
m

d
i
r
e
c
t
l
y
,

r
a
t
h
e
r

t
h
a
n

b
y

t
y
p
i
n
g

t
e
n
-
d
i
g
i
t

n
u
m
b
e
r
s

i
n
t
o

m
e
m
o
r
y

l
o
c
a
t
i
o
n
s
,

10
3

Y
o
u
r

T
Y
P
E

p
r
o
c
e
d
u
r
e

i
s

a
l
m
o
s
t

r
e
a
d
y

t
o

b
e

u
s
e
d
.

N
o
t
i
c
e

t
h
a
t

i
t

h
a
s

t
w
o

i
t
e
r
a
t
i
v
e

p
a
r
t
s
,

E
a
c
h

p
a
r
t

h
a
s

a

d
i
f
f
e
r
e
n
t

g
o
a
l

a
n
d

s
o

e
a
c
h

h
a
s

a

d
i
f
f
e
r
e
n
t

s
t
o
p
p
i
n
g

r
u
l
e
.

w
h
e
n

T
Y
P
E

i
s

c
a
l
l
e
d

(
e
x
e
c
u
t
e
d
)
,

i
t
s

f
i
r
s
t

o
s
r
t

(
G
e
o
r
g
)

f
i
n
d
s

t
h
e

l
o
c
a
t
i
o
n

h
9

w
a
s

g
i
v
e
n

a
s

a
n

i
n
p
u
t

e
n
d

g
e
t
s

f
r
o
m

t
h
a
t

h
i
s

f
i
r
s
t

l
o
a
d

o
f

c
h
a
r
a
c
t
e
r
s
.

G
e
o
r
g
e

g
i
v
e
s

t
h
e
m
,

a
s

a

n
u
m
b
e
r

i
n

t
h
e

A

r
e
g
i
s
t
e
r
,

t
o

T
Y
E
'
,

s
e
c
o
n
d

p
a
r
t

(
M
a
r
t
h
a
)

w
h
o

t
y
p
e
s

o
u
t

'
s
m
i
t
h
,

f
i
v
e

c
h
a
r
a
c
t
e
r
s

f
r
o
m

t
h
a
t

r
e
g
i
s
t
e
r
,

w
h
e
n

W
e
r
t
h
*

f
i
n
i
s
h
.
:

w
i
t
h

o
n
.

r
e
g
i
s
t
e
r

f
u
l
l

o
f

c
h
a
r
a
c
t
e
r
s
.

s
h
e

10
0

:P
U

T
 P

(
T
Y
P
E
)

1
0
3

!
L
O
A

1
3

T
Y
P
E
:
2

(
N
E
X
T
)

10
4

:
L
O
A

A

o
f
f

H
b

W
W
1

A

10
5

:
L
O
A

P

T
Y
P
E
*
1

1
0
1

:
I
N
C

B

10
6

:
S
T
O

B

T
Y
P
E
*
2 G
e
o
r
g
e

t
e
l
l
s

G
e
o
r
g
e

t
o

g
e
t

a
n
o
t
h
e
r

l
o
a
d

1
0
9

:
P
U
T

B

0

1
1
0

:
C
O
M

B

F
I
V
E

(
M
O
R
E
)

(
P
U
T

P
N
E
X
T
)
,

G
e
o
r
g
e

h
a
s

a
l
r
e
a
d
y

1
1
/

:
N
O
P

1
1
2

:
P
U
T

P

N
E
X
T

m
a
d
e

t
h
e

a
d
d
r
e
s
s

o
f

t
h
e

n
e
x
t

l
o
c
a
t
i
o
n

1
1
3

:
R
O
T

A

L
2

1
1
4

:
C
V
R

A

w
h
e
r
e

h
e

w
i
l
l

l
o
o
k

f
o
r

c
h
a
r
e
c
t
e
r
s
y

h
e

U
S

:
I
N
C

B

1
1
6

:
P
U
T

P

M
O
R
E

a
d
d
e
d

I

t
o

t
h
e

v
a
l
u
e

i
n

T
Y
P
E
+
2

w
i
t
h

t
h
e

I
N
C

a

a
n
d

S
T
O

D

T
Y
P
E
*
2

i
n
s
t
r
u
c
t
i
o
n
s
.

l
e
t
s

r
e
a
d
y

t
o

s
e
e

I
f

h
e

c
a
n

g
e
t

a
n
o
t
h
e
r

l
o
c
e
t
i
o
n

w
i
t
h

f
i
v
e

e
h
e
r
e
c
t
e
r
s

i
n

i
t
.

I
f

h
e

C
l
e
t
e

a
n

e
m
p
t
y

l
o
c
a
t
i
o
n

(
0
)
,

h
e
'
l
l

s
t
e
p

a
n
d

u
s
e

t
h
e

r
e
t
u
r
n

a
d
d
r
e
s
s

t
o

g
o

b
a
c
k

w
h
e
r
e

h
e

w
a
s

C
O
I
I
0
0
.

M
a
r
t
h
a

1

M
a
r
t
h
a

i
s

g
o
o
d

i
t

c
o
u
n
t
i
n
g

u
p

t
o

a
n
y

n
u
m
b
e
r

b
e
c
a
u
s
e

s
h
e

u
s
e
s

C
O
M
P
A
R
E

i
n
s
t
r
u
s
t
i
e
n
,

G
e
o
r
g
e

d
o
e
s
n
'
t

c
a
r
e

h
o
w

f
a
r

h
e

h
a
s

t
o

c
o
u
n
t
,

I
s

J
u
s
t

k
e
e
p
s

o
n

l
o
o
k
i
n
g

a
t

o
n
e

l
o
c
a
t
i
o
n

a
f
t
e
r

a
n
o
t
h
e
r

u
n
t
i
l

h
a

f
i
n
d
s

a
n

e
m
p
t
y

o
n
e

(
J
U
M
P

A

,

+
2
)
,

T
%
e
y

b
o
t
h

i
t
e
r
a
t
e

t
o

r
e
a
c
h

t
h
e
i
r

g
o
a
l
s
,

M
h
f
'
s

G
e
o
r
g
e
l
a

s
t
o
p
p
i
n
g

r
u
l
e
/

W
h
a
t
'
s

M
a
r
t
h
a
'
s
:

Acknowledgements

This work was supported by National Science Foundation Grant NSF-

GJ-443X. We are further indebted to our student volunteers. They

remain anonymous, but they were the most important people in the

experiment. We also thank Adele Goldberg and Diane Kanerva for their

editorial assistance.

216

References

Atkinson, R., Fletcher, J. D., Lindsay, E., Campbell, O., & Barr, A.
Computer-assisted instruction in initial reading. (Tech. Rep.

No. 207) Stanford, Calif.: Institute for Mathematical Studies in

the Social Sciences, Stanford University, 1973.

Baecker, R. Personal communication, 1974.

Benbasset, G., & Sanders, W. Personal communication, 1974.

Berry, P. Pretending to have (or to be) a computer as a strategy in

teaching. Harvard Educational Review, 1964, 34, 383-401.

Bradley, J. Distribution-free statistical tests. Englewood Cliffs,

N.J.: Prentice-Hall, 1968.

Brand, S. Two cybernetic frontiers. New York/Berkeley Calif.: Random

House/The Bookworks, 1974.

Bredt, T. A computer model of information processing in children.
(Tech. Rep. No. CS100) Stanford, Calif: Computer Science

Department, Stanford University, 1968.

Brown, J., & Burton, R. SOPHIE -- A pragmatic use of AI in CAI. The

ACM National Conference, San Diego, 1974.

Brown, J., & Rubinstein, R. Recursive functional programming for
students in the humanities and social sciences. (Report No.

27) Irvine, Calif.: Department of Information and Computer

Science, U. C. Irvine, 1973.

Cannara, A. Children learning computer programming. Stanford, CaliL:
Institute for Mathematical Studies in the Social Sciences,
Stanford University, 1975, forthcoming.

Cannara, A., & Weyer, S. A study of children's programming. The 1974

Conference on Computer-Based Learning Systems, University of
Hamburg, Federal Republic of Germany, 1974.

Carbonell, J. Mixed initiative man-computer instruction. (Report No.

1971) Boston: Bolt, Beranek & Newman, 1970.

Davis, M. (Ed.) The undecidable. New York: Raven Press, 1965,

Denning, P. Virtual memory. Computing Surveys, 1970, 2, 153-189.

Dwyer, T. A. An experiment in the regional use of computers la,

secondary schools. Final Report, NSF-OCA-GJ1077-SOLO, 1972.

217

DJx

Ellis, A. The use and misuse of computers in education, New York:
McGraw-Hill, 1972.

Evey, R. J. The theory and applications of pushdown stare machines.
Unpublished doctoral dissertation, Harvard University, 1963.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., & Solomon, C.
Programming languages as a conceptual framework for teaching
mathematics. (Report No. 1889) Boston: Bolt, Beranek &
Newman, 1969.

Feurzeig, W., Lukas, G., Faflick, P., Grant, R., Lukas, J., Morgan, C.,
Weiner, W., & Wexelblat, P. Programming languages as a
conceptual framework for teaching mathematics. (Report No.
2165) Final Report, NSF-C-615, Vols, 1-3. Boston: Bolt,
Beranek & Newman, 1971.

Feurzeig, W., & Lukas, G. Logo: A programming language for teaching
mathematics. Educational Technology, March, 1972.

Feurzeig, W., & Lukas, G. A programmable robot for teaching. The
International Congress of Cybernetics and Systems, Oxford,
England, 1972.

Fischer, G. Material and ideas to teach an introductory programming
course using Logo. Irvine, Calif.: Department of Information
and Computer Science, U. C. Irvine, 1973.

Folk, M., Statz, J., & Seidman, R. Syracuse university Logo project
(Report No 3) Final Report, NSF-TIE-GJ32222-3. Syracuse, New
York: Syracuse University, 1974,

Goldberg, A. Computer-assisted instruction: The application of theorem
proving to adaptive response analysis. (Tech. Rep. No 203).
Stanford, Calif.: Institute for Mathematical Studies in the
Social Sciences, Stanford University, 1973.

Goldberg, A., Levine, D., & Weyer, S. Three sample instructional
programs from Stanford University. Computers in the
instructional process: Report, of an international school.
Ann Arbor, Mich.: Extend Publications, 1974.

Kay, A. A personal computer for children of all ages. The ACM National
Conference, Boston, 1972.

Kay, A. A dynamic medium for creative thought. Meeting of The National
Council of Teachers of English, Minneapolis, 1972.

Kimball, R. Self-optimizing computer-assisted tutoring: theory and
practice. (Tech. Rep. No, 206). Stanford, Calif.: Institute
for Mathematical Studies in the Sc,:ial Sciences, Stanford
University, 1973.

218

Knuth, D. MIX. Reading, Mass,: Addison-Wesley Series in Computer
Science and Information Processing, 1970.

Koestler, A. The roots of coincidence., New York: Vintage Books/Random
House, 1973.

Levison, M., Ward, G., & Webb, J. The settlement of Polynesia. A
computer simulation. Minneapolis: University of Minnesota
Press, 1973.

Lorton, P., & Slimick, J. Computer -based instruction in computer
programming. Fall Joint Computer Conference, Las Vegas, 1969.

Manis, V, A machine independent implementation of Logo. Unpublished
doctoral dissertation, University of British Columbia, 1973.

Manna, Z, Introduction to the mathematical theory of computation. New
York: McGraw-Hill, 1972.

Milner, S. The effects of computer programming on performance in
mathematics. Annual Meeting of the AERA, New Orleans,
February, 1973.

Minsky, M. Computation: Finite and infinite machines. Englewood
Cliffs, N.J.: Prentice-Hall, 1967.

Oettinger, A., & Marks, S. Run, computer run: The mythology of
educational innovation, Boston: Harvard Press, 1969.

Papert, S. Teaching children thinking, IFIP Conference on Computer
Education, Amsterdam, August, 1970.

Piaget, J, Genetic epistemology. New York: Columbia University Press,
1970.

Polya, G, How to solve it. Princeton, N.J.: Princeton University
Press, 1957.

Puri, M. (Ed,) Nonparametric techniques in statistical inference.
London: Cambridge University Press, 1970.

Roman, R. Logo: A student manual. Pittsburgh: Learning Research and
Development Center, University of Pittsburgh, 1972*

Scribner, S., & Cole, M. Cognitive consequences of formal and informal
education. Science, 182(4112), 9 November, 1973.

Smallwood, R, A decision structure for teaching machines, Boston:

MIT Press, 1962.

Swinehart, D., & Sproull, R. SAIL. (Sailon No, 57.2), Stanford,
Calif.: Stanford Artificial Intelligence Laboratory, 1971.

219

Toomre, A., & Toomre, J. Violent tides between galaxies. Scientific
American, 229(6), December, 1973,

Winograd, T. Procedures as a representation of data in a computer
program for understanding natural language, (Project MAC TR-84),
Boston: MIT, 1971.

Winograd, T. When will computers understand people? Psychology Today,
May, 1974,

Wittrock, M. (Ed.) Changing education: Alternatives from educational
research. Englewood Cliffs, N.J.: Prentice-Hall, 1973.

Worthen, B., & Sandes, J. Educational evaluation: Theory and
practice. Worthington, Ohio: Charles Jones Publishing Co.,
1973.

220

(Continued from inside front cover)

165 L. J. Hubert. A formal model for the perceptual processing of geometric ...unfemations. February 19, 1971. (A statistical meilod for

Investigating the perceptual confusions among geometric configurations. Journal of Mathematical Psychology, 1972, 9, 389-403.)
166 J. F. Juola, I. S. Fisch ler, C. T. Wood, and R. C. Atkinson. Recognition time for information stored in long-term memory. (Perception and

Psychophysics, 1971, 10, 8-14.)
167 R. L. Klatzky and R. C. Atkinson. Specialisation of the cerebral hemispheres in scanning for information in short-term memory. (Perception

and Psychophysics, 1971, 10, 335-338.)
168 J. D. Fletcher and R. C. Atkinson. An evaluation of the Stanford CAl program Ili initial reading (grades K through 3). March 12, 1971.

(Evaluation of the Stanford CAI program in initial reading. Journal of Educational Psychology, 1972, 63, 597-602.)
169 J. F. Juola and R. C. Atkinson. Memory scanning for words versus categories. (Journal of Verbal Learning and Verbal Behavior, 1971,

10, 522-527.)
170 I. S. Fischler and J. F. Juola. Effects of repeated tests on recognition time for information in long-term memory. (Journal of Experimental

Psychology, 1971, 91, 54-58.)
171 P. Suppes. Semantics of context-free fragments of natural languages. March 30, 1971. (In K. J. J. Hintikka, J. M. E. Moravcsik, and

P. Suppes (Eds.), Approaches to natural language. Dordrecht: Reidel, 1973. Pp. 221-242.)
172 J. Friend. INSTRUCT coders' manual. May 1, 1971.
173 R. C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. April 19,1971. (The control of short-termmemory.

Scientific American, 1971, 224, 82-90.)
174 P. Suppes. Computer-assisted instruction at Stanford. May 19, 1971. (In Man and compute'. Proceedings of internationalconference,

Bordeaux, 1970. Basel: Karger, 1972. Pp. 298-330.)
175 D. Jamison, J. D. Fletcher, P. Suppes, and R. C. Atkinson. Cost and performance of computer-assisted instruction for education of disadvantaged

children. July, 1971.
176 J. Offir. Some mathematical models of individual differences in learning and performance. June 28, 1971. (Stochastic learning models with

distribution of parameters. Journal of Mathematical Psychology, 1972, 9(4),
177 R. C. Atkinson and J. F. Juola. Factors influencing speed and accuracy of word recognition. August 12, 1971. (In S. Kornblum (Ed.),

Attention and performance IV. New York: Academic Press, 1973.)

178 P. Suppes, A. Goldberg, G. Kanz, B. Searle, and C. Stauffer. Teacher's handbook for CAl courses. September 1, 1971.
179 A. Goldberg. A generalized instructional system for elementary mathematical logic. October 11, 1971.
180 M. Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem-solving difficulty. November 12,

1971. (Individualized instruction in problem solving in elementary mathematics. Journal for Research in Mathematics Education, 1973,
4, 6-19.)

181 P. Suppes. On the grammar and model-theoretic semantics of children's noun phrases. November 29, 1971.
182 G. Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.
183 J. M. Moloney. An investigation of college student performance on a logic curriculum in a computer-assisted instruction setting. January 28,

1972.
184 J. E. Friend, J. D. Fletcher, and R. C. Atkinson. Student performance in computer-assisted instruction in programming. May 10, 1972.
185 R. L. Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.
186 A. Goldberg and P. Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972. (Educational Studies

in Mathematics, 1972, 4, 4 29-44 9.)
187 R. C. Atkinson. Ingredients for a theory of instruction. June 26, 1972. (American Psychologist, 1972, 27, 921-931.)
188 J. D. Bonvillian and V. R. Charrow. Psycholinguistic implications of deafness: A review. July 14, 1972.
189 P. Arable and S. A. Boorman. Multidimensional scaling of measures of distance between partitions. July 26, 1972. (Journai of Mathematical

Psychology, 1973, 10,
190 J. Ball and D. Jamison. Computer-assisted instruction for dispersed populations. System cost models. September 15, 1972. (Instructional

Science, 1973, 1, 469-501.)
191 W. R. Sanders and J. R. Ball. Logic documentation standard for the Institute for Mathematical Studies in the Social Sciences. October 4, 1972.
192 M. T. Kane. Variability in the proof behavior of college students in a CAI course in logic as a function of problem characteristics. Oct.aer 6,

1972.
193 P. Suppes. Facts and fantasies of education. October 18, 1972. (In M. C. Wittrock (Ed.), Changing education. Alternatives from educational

research. Englewood Cliffs, N. J.: Prentice-Hall, 1973. Pp. 6-45.)
194 R. C. Atkinson and J. F. Juola. Search and decision processes in recognition memory. October 27, 1972.

195 P. Suppes, R. Smith, and M. Levellle. The French syntax and semantics of PHILIPPE, part 1. Noun phrases. November 3, 1972.
196 D. Jamison, P. Suppes, and S. Wells. The effectiveness of alternative instructional methods. A survey. November , 1972.
197 P. Suppes. A survey of cognition in handicapped children. December 29, 1972.

198 B. Searle, P. Lorton, Jr., A. Goldberg, P. Suppes, N. Ledet, and C. Jones. Computer-assisted instruction program. Tennessee State

University. February 14, 1973.
199 D. R. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973.
200 P. Suppes, J. D. Fletcher, M. Zanotti, P. V. Lorton, Jr., and B. W. Searle. Evaluation of computer-assisted instruction in elementary

mathematics for hearing-impaired students. March 17, 1973.

201 G. A. Huff. Geometry and formal linguistics. April 27, 1973.
202 C. Jensema. Useful techniques for applying latent trait mental-test theory. May 9, 1973.
203 A. Goldberg. Computer-assisted instruction. The application of theorem-proving to adaptive response analysis. May 25, 197...
204 R. C. Atkinson, D. J. Herrmann, and K. T. Wescourt. Search processes in recognition memory. June 8, 1973.
205 J. Van Campen. A computer-based Introduction to the morphology of Old Church Slavonic. June 18, 1973.

206 R. B. Kimball. Self-optimizing computer-assisted tutoring: Theory and practice. June 25, 1973.
207 R. C. Atkinson, J. D. Fletcher, E. J. Lindsay, J. 0. Campbell, and A. Barr. Computer-assisted instruction in initial reading. July 9, 1973.
208 V. R. Charrow and J. D. Fletcher. English as the second language of deaf students. July 20, 1973.

209 J. A. Paulson. Ah evaluation of instructional strategies in a simple learning situation. July 30, 1973.
210 N. Martin. Convergence properties of a class of probabilistic adaptive schemes called sequential reproductive plans. July 31, 1973.

(Continued from inside back cover)

211 J. Friend. Computer-assisted instruction in programming: A curriculum description. July 31, 1973.

212 S. A. Weyer. Fingerspelling by computer. August 17, 1973.

213 B. W. Searle, P. Lorton,Jr., and P. Suppes. Structural variables affecting CAI performance on arithmetic word problems of disadvantaged

and deaf students. September 4, 1973.

214 P. Suppes, J. D. Fletcher, and M. Zanotti. Models of individual trajectories in computer-assisted instruction for deal students. October 31, 1973.
215 J. D. Fletcher and M. H. Beard. Computer-assisted instruction In language arts for hearing-impaired students. October 31, 1973.
216 J. D. Fletcher. Transfer from alternative presentations of spelling patterns in initial reading. September 28, 1973.

217 P. Suppes, J. O. Fletcher/and M. Zanotti. Performance models of American Indian students on computer-assisted instruction in
elementary mathematics. October 31, 1973.

218 J. Fiksel. A network-of-automata model for question-answering in semantic memory. October 31, 1973.

219 P. Suppes. The concept of obligation in the context of decision theory. (In J. Leach, R. Butts, and G. Pearce t Eds.), Science, decisionand

value. (Proceedings of the fifth University of Western Ontario philosophy colloquium, 1969.) Dordrecht. Reidel, 1973. Pp. 1-14..
220 F. L. Rawson. Set-theoretical semantics for elementary mathematical language. November 7, 1973.

221 R. Schupbach. Toward a computer-based course in the history of the Russian literary language. December 31, 1973.

222 M. Beard, P. Lorton, B. W. Searle, and R. C. Atkinson. Comparison of student performance and attitude under three lesson-selection
strategies In computer-assisted instruction. December 31, 1973.

223 D. G. Danforth, D. R. Rogosa, and P. Suppes. Learning models for real-time speech recognition. January 15, 1974.

224 M.R. Raugh and R. C. Atkinson. A mnemonic method for the acquisition of a second-language vocabulary. March 15, 1974.

225 P. Suppes. The semantics of children's language. (American Psychologist, 1974, 29, 103-114.)

226 P. Suppes and E. M. Gammon. Grammar and semantics of some six-year-old black children's noun phrases.

227 N. W. Smith. A question-answering system for elementary mathematics. April 19, 1974.

228 A. Barr, M. Beard,and R. C. Atkinson. A rationale and description of the BASIC instructional program. April 22, 1974.

229 P. Suppes. Congruence of meaning. (Proceedings and Addresses of the American Philosophical Association, 1973, 46, 21-38.)

230 P. Suppes. New foundations of objective probability. Axioms for propensities. (In P. Suppes, L. Henkin, Gr. C. Moisil, and A. Joja
Eds.), methodology, and philosophy of science IV. Proceedings of the fourth international congress for logic, methodology

and philosophy of science, Bucharest, 1971. Amsterdam: North-Holland,1973. Pp.515-529.)

231 P. Suppes. The structure of theories and the analysis of data. (In F. Suppe (Ed.), The structure of scientific theories. Urbana, Ill..

University of Illinois Press, 1974. Pp. 267-283.)

232 P. Suppes. Popper's analysis of probability in quantum mechanics. (In P. A. Schilpp (Ed.), The philosophy of Karl Popper. Vol. 2.
La Salle, Open Court, 1974. Pp.760-774.)

233 P. Suppes. The promise of universal higher education. (In S. Hook,P. Kurtz, and M. Todorovich (Eds.), The idea of a modem university.

Buffalo, N. Y.: Prometheus Books, 1974. Pp. 21-32.)

234 P. Suppes. Cognition: A survey. (In J. A. Swets and L. L. Elliott (Eds.), Psychology and the handicapped child.

Washington, D. C.: U. S. Government Printing Office, 1974.)

235 P. Suppes. The place of theory in educational research.(Educational Researcher, 1974, 3 (6), 3-10.)
236 V. R. Charrow. Deaf EnglishAn investigation of the written English competence of deaf adolescents. September 30, 1974.

237 R. C. Atkinson and M. R. Raugh. An application of the mnemonic keyword .nethod to the acquisition of a Russian vocabulary. October 4, 1974.

238 R. L. Smith, N. W. Smith, and F. L. Rawson. CONSTRUCT; In search of a theory of meaning. October 25, 1974.

239 A. Goldberg and P. Suppes. Computer - assisted instruction in elementary logic at the university level. November 8, 1974.

240 R. C. Atkinson. Adaptive instructional systems. Some attempts to optimize the learning process. November 20, 1974.
241 P. Suppes and W. Rottmayer. Automata. (In E. C. Carterette and M. P. Friedman (Eds.), Handbook of perception. Vol. 1 .

Historical and philosophical roots of perception. New York: Academic Press, 1974.)

242 P. Suppes. The essential but implicit role of modal concepts in science. (In R. S. Cohen and M. W. Wartofsky tEds.j, Boston studies in the

philosophy of science, Vol. 20, K. F. Schaffner and R. S. Cohen (Eds.), PSA 1972, Proceedings of the 1972 biennial meeting of the
Philosophy of Science Association, Synthese Library, Vol. 64. Dordrecht: Reidel, 1974.)

243 P. Suppes, M. Lei/Nile, and R. L. Smith. Developmental models of a child's French syntax. December 4, 1974.

244 R. L. Breiger, S. A. Boorman, and P . Arable. An algorithm for blocking relational data, with ap,iiications to social network analysis and

comparison with multidimensional scaling. December 13, 1974.

245 P. Suppes. Aristotle's concept of matter and its relation to modern concepts of matter. (Synthese, 1974 28 27-50.)
246 P. Suppes. The axiomatic method in the empirical sciences. (In L. Henkin et al. (Eds.) , Proceedings of the Tank! symposium, Proceedings of

symposil in pure mathematics, 25. Providence, R. I.: American Mathematical Society, 1974.)

247 P. Suppes. The measurement of belief. (Journal of the Royal Statistical Society, Series B, 1974 36, 160.)

248 R. Smith. TENEX SAIL. January 10, 1975

249 J. 0. Campbell, E. J. Lindsay, and R. C. Atkinson. Predicting reading achievement from measures available during computer-assisted

instruction. January 20, 1975.

250 S. A. Weyer and A. B. Cannara. Children learning computer programming. Experiments with languages, curricuia and programmable devices.
January 27, 1975.

